Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947135
1.
1.C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, J. Opt. Soc. Am. B: Opt. Phys. 6, 616 (1989).
http://dx.doi.org/10.1364/JOSAB.6.000616
2.
2.X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, Laser Phys. Lett. 7, 563 (2010).
http://dx.doi.org/10.1002/lapl.201010027
3.
3.D. Nikogosyan, Appl. Phys. A 58, 181 (1994).
http://dx.doi.org/10.1007/BF00324374
4.
4.I. M. Thomas, Appl. Opt. 25, 1481 (1986).
http://dx.doi.org/10.1364/AO.25.001481
5.
5.T. Tan, J. Shan, W. Wu, J. Shao, and Z. Fan, Journal of Wuhan University of Technology-Mater. Sci. Ed. 26, 687 (2011).
http://dx.doi.org/10.1007/s11595-011-0293-2
6.
6.T. Tan, D. Zhang, M. Zhan, J. Shao, and Z. Fan, Chin. Phys. Lett. 22, 227 (2005).
http://dx.doi.org/10.1088/0256-307X/22/1/065
7.
7.Z. Deng, H. He, Y. Song, Y. Yang, Z. Fan, and J. Shao, High Power Laser and Particle Beams 19, 325 (2007).
8.
8.A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, in Boulder Damage Symposium XXXVII: Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2005), p. 59911C.
9.
9.G. Abromavičius, R. Buzelis, R. Drazdys, K. Juškevičius, S. Kičas, T. Tolenis, J. Mirauskas, M. Ščiuka, V. Sirutkaitis, and A. Melninkaitis, Lith. J. Phys. 51, 303 (2011).
http://dx.doi.org/10.3952/lithjphys.51407
10.
10.A. Melninkaitis, D. Miksys, R. Grigonis, V. Sirutkaitis, D. Tumosa, G. Skokov, and D. Kuzma, Optical Systems Design 2005 (International Society for Optics and Photonics, 2005), p. 59631I.
11.
11.M. Aegerter, R. Almeida, A. Soutar, K. Tadanaga, H. Yang, and T. Watanabe, J. Sol-Gel Sci. Technol. 47, 203 (2008).
http://dx.doi.org/10.1007/s10971-008-1761-9
12.
12.P. K. Biswas, J. Sol-Gel Sci. Technol. 59, 456 (2011).
http://dx.doi.org/10.1007/s10971-010-2368-5
13.
13.T. Minami, J. Sol-Gel Sci. Technol. 65, 4 (2013).
http://dx.doi.org/10.1007/s10971-011-2572-y
14.
14.X. Dieudonné, K. Vallé, and P. Belleville, Opt. Express 19, 16356 (2011).
http://dx.doi.org/10.1364/OE.19.016356
15.
15.C. Parfeniuk, I. Samarasekera, F. Weinberg, J. Edel, K. Fjeldsted, and B. Lent, J. Cryst. Growth 158, 523 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00462-9
16.
16.R. Brenier and A. Gagnaire, Thin Solid Films 392, 142 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01009-4
17.
17.R. Brenier, C. Urlacher, J. Mugnier, and M. Brunel, Thin Solid Films 338, 136 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01092-X
18.
18.J. Mendiola, M. L. Calzada, P. Ramos, M. J. Martin, and F. Agulló-Rueda, Thin Solid Films 315, 195 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00698-6
19.
19.R. J. Ong, T. A. Berfield, N. R. Sottos, and D. A. Payne, J. Eur. Ceram. Soc. 25, 2247 (2005).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.103
20.
20.R. Yahata and H. Kozuka, Thin Solid Films 517, 1983 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.08.117
21.
21.S. S. Sengupta, S. M. Park, D. A. Payne, and L. H. Allen, J. Appl. Phys. 83, 2291 (1998).
http://dx.doi.org/10.1063/1.366971
22.
22.B. Ma, T. Ding, H. Jiao, G. Zhou, Z. Shen, X. Cheng, J. Zhang, H. Liu, Y. Ji, and P. He, in Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers (International Society for Optics and Photonics, 2010), p. 78420E.
23.
23.D. Grosso, J. Mater. Chem. 21, 17033 (2011).
http://dx.doi.org/10.1039/c1jm12837j
24.
24.M. Faustini, B. Louis, P. A. Albouy, M. Kuemmel, and D. Grosso, J. Phys. Chem. C 114, 7637 (2010).
http://dx.doi.org/10.1021/jp9114755
25.
25.X. Wang, G. Wu, B. Zhou, and J. Shen, Materials 6, 76 (2013).
http://dx.doi.org/10.3390/ma6010076
26.
26.X. Wang, G. Wu, B. Zhou, and J. Shen, Opt. Express 20, 24482 (2012).
http://dx.doi.org/10.1364/OE.20.024482
27.
27.X. Wang, G. Wu, B. Zhou, and J. Shen, Materials 6, 2819 (2013).
http://dx.doi.org/10.3390/ma6072819
28.
28.S. Malhotra, Z. Rek, S. Yalisove, and J. Bilello, Thin Solid Films 301, 45 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)09569-7
29.
29.L. B. Freund and S. Suresh, Thin film materials: stress, defect formation and surface evolution (Cambridge University Press, 2004).
30.
30.C.-L. Tien, C.-C. Lee, Y.-L. Tsai, and W.-S. Sun, Opt. Commun. 198, 325 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01511-5
31.
31.W. Nix, Metall. Trans. A 20, 2217 (1989).
http://dx.doi.org/10.1007/BF02666659
32.
32.A. J. Perry, J. A. Sue, and P. J. Martin, Surf. Coat. Technol. 81, 17 (1996).
http://dx.doi.org/10.1016/0257-8972(95)02531-6
33.
33.M. Ohring, in Materials Science of Thin Films, 2nd ed., edited by M. Ohring (Academic Press, San Diego, 2002).
34.
34.X. Wang, G. Wu, B. Zhou, and J. Shen, J. Alloys Compd. 556, 182 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.12.115
35.
35.X. Ye, T. Ding, X. Cheng, Z. Shen, X. Wang, Y. Liu, G. Bao, and W. He, Infrared and Laser Engineering 41, 713 (2012).
36.
36.G. W. Scherer, Langmuir 12, 1109 (1996).
http://dx.doi.org/10.1021/la9503111
37.
37.I. P. Shakhverdova, P. Paufler, R. S. Bubnova, S. K. Filatov, A. A. Levin, and D. C. Meyer, Cryst. Res. Technol. 43, 339 (2008).
http://dx.doi.org/10.1002/crat.200711104
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947135
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947135
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947135
2016-04-14
2016-09-28

Abstract

Lithium triborate (LiBO, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiOAR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol–gel SiOcoatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young’s modulus of the LBO crystal and the different evolution tendency of the stress in the different SiOcoating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947135.html;jsessionid=R0kBXW2feUZ_ZZPxswTH6b4l.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947135&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947135&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947135'
Right1,Right2,Right3,