Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947136
1.
1.J. A. Rodríguez-Martínez, A. Rusinek, and A. Arias, Thin. Struc. 49, 819 (2011).
http://dx.doi.org/10.1016/j.tws.2011.02.007
2.
2.F. Q. Jing, Introduction to Experimental Equation of State (Academic, Beijing, 1977), p. 65.
3.
3.T. J. Vogler and L. C. Chhabildas, Int. J. Impact Eng. 33, 812 (2006).
http://dx.doi.org/10.1016/j.ijimpeng.2006.09.069
4.
4.Z. Rosenberg and G. Moshel, J. Appl. Phys. 115, 103511 (2014).
http://dx.doi.org/10.1063/1.4868296
5.
5.D. Bernstein, C. Godfrey, A. Klein, and W. Shimin, Behavior of Dense Media Under High Dynamic Pressures (Gordon and Bresch, New York, 1968), p. 461.
6.
6.Z. Rosenberg, Y. Partom, and D. Yaziv, J. Appl. Phys. 52, 755 (1981).
http://dx.doi.org/10.1063/1.328758
7.
7.Z. Rosenberg and Y. Partom, J. Appl. Phys. 58, 3072 (1985).
http://dx.doi.org/10.1063/1.335833
8.
8.Y. M. Gupta, D. D. Keough, D. Henley, and D. F. Walter, Appl. Phys. Lett. 37, 395 (1980).
http://dx.doi.org/10.1063/1.91955
9.
9.Y. M. Gupta, J. Appl. Phys. 54, 6256 (1983).
http://dx.doi.org/10.1063/1.331951
10.
10.L. H. Dai, M. Yan, and L. T. Shen, Chin. Phys. Lett. 21, 707 (2004).
http://dx.doi.org/10.1088/0256-307X/21/4/033
11.
11.R. E. Winter and E. J. Harris, J. Phys. D:Appl. Phys. 39, 5323 (2006).
http://dx.doi.org/10.1088/0022-3727/39/24/034
12.
12.Z. Rosenberg and Y. Partom, J. Appl. Phys. 57, 5084 (1985).
http://dx.doi.org/10.1063/1.335291
13.
13.J. R. Asay and J. J. Lipkin, J. Appl. Phys. 49, 4242 (1978).
http://dx.doi.org/10.1063/1.325340
14.
14.J. R. Asay and L. C. Chhabildas, J. Appl. Phys. 51, 4774 (1980).
http://dx.doi.org/10.1063/1.328309
15.
15.J. R. Asay and L. C. Chhabildas, SAND88-0306,1988.
16.
16.F. Yuan, L. Tsai, V. Prakash, D.P. Dandekar, and A.M. Rajendran, J. Appl. Phys. 103, 103537 (2008).
http://dx.doi.org/10.1063/1.2930995
17.
17.R. Fowles, J. Appl. Phys. 32, 1475 (1961).
http://dx.doi.org/10.1063/1.1728382
18.
18.J. B. Hu, C. D. Dai, Y. Y. Yu, and H. Tan, Explo. and Shock Waves. 26, 516 (2006).
19.
19.R. Fowles and R. F. Williams, J. Appl. Phys. 41, 360 (1970).
http://dx.doi.org/10.1063/1.1658348
20.
20.M. Cowperthwaite and R. F. Williams, J. Appl. Phys. 42, 456 (1971).
http://dx.doi.org/10.1063/1.1659623
21.
21.D. E. Grady, J. Geop. Res. 78, 1299 (1973).
http://dx.doi.org/10.1029/JB078i008p01299
22.
22.L. Seaman, J. Appl. Phys. 45, 4303 (1974).
http://dx.doi.org/10.1063/1.1663050
23.
23.H. F. Liu and J. G. Ning, Mech. of Mater. 41, 1298 (2009).
http://dx.doi.org/10.1016/j.mechmat.2009.02.001
24.
24.L. Wang, J. Zhu, and H. Lai, Strain 47, 173 (2011).
http://dx.doi.org/10.1111/j.1475-1305.2008.00533.x
25.
25.W. J. Tao and S. Huan, Acta.Phys. Sin. 6, 200793 (2012).
26.
26.W. D. Reinhart and L. C. Chhabildas, Int. J. Impact Eng. 29, 601 (2003).
http://dx.doi.org/10.1016/j.ijimpeng.2003.10.008
27.
27.Z. Rosenberg, Y. Partom, and D. Yaziv, J. Appl. Phys. 56, 143 (1984).
http://dx.doi.org/10.1063/1.333737
28.
28.H. Huang and J. R. Asay, J. Appl. Phys. 98, 033524 (2005).
http://dx.doi.org/10.1063/1.2001729
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947136
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947136
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947136
2016-04-14
2016-12-10

Abstract

A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangiananalysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947136.html;jsessionid=U_CTG7n9gqjfpkzPCT0gRGkt.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947136&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947136&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947136'
Right1,Right2,Right3,