Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947191
1.
1.B. Sturdevant and V. A. Kulkarny, J. Fluid Mechan. 73, 651 (1976).
http://dx.doi.org/10.1017/S0022112076001559
2.
2.H. Kishige, K. Teshima, and M. Nishida, Shock Waves 1, 341 (1991).
3.
3.K. Izumi, S. Aso, and M. Nishida, Shock Waves 3, 213 (1994).
http://dx.doi.org/10.1007/BF01414715
4.
4.H. Babinsky and K. Takayama, Computers and Fluids 27, 611 (1998).
http://dx.doi.org/10.1016/S0045-7930(97)00058-3
5.
5.F. V. Shugaev, A. O. Serov, L. S. Shtemenko et al., Shock Waves 9, 31 (1999).
http://dx.doi.org/10.1007/s001930050136
6.
6.P. Kowalczyk, T. Platkowski, and W. Walus, Shock Waves 10, 77 (2000).
http://dx.doi.org/10.1007/s001930050181
7.
7.B. W. Skews and H. Kleine, J. Fluid Mechan. 580, 481 (2007).
http://dx.doi.org/10.1017/S0022112007005757
8.
8.B. W. Skews, H. Kleine, T. Barber et al., in 16th Australasian Fluid Mechanics Conference: New flow features in a cavity during shock wave impact (Crown Plaza, Gold Coast, Australia, 2007), pp. 414420.
9.
9.C. Bond, D. J. Hill, D. I. Meiron et al., J. Fluid Mechan. 641, 297 (2009).
http://dx.doi.org/10.1017/S0022112009991492
10.
10.Y. G. Jung and K. S. Chang, Shock Waves 22, 641 (2012).
11.
11.G. A. Sod, J. Fluid Mechan. 73, 651 (1977).
12.
12.J. H. T. Wu, R. A. Neemeh, and P. P. Ostrowski, AIAA J. 19, 257 (1981).
http://dx.doi.org/10.2514/3.7770
13.
13.Z. L. Jiang and K. Takayama, Comput. Fluids 27, 553 (1998).
http://dx.doi.org/10.1016/S0045-7930(97)00063-7
14.
14.H. H. Teng and Z. L. Jiang, Shock Waves 14, 299 (2005).
http://dx.doi.org/10.1007/s00193-005-0277-2
15.
15.S. H. R. Hosseini and K. Takayama, in Proceedings of 23rd ISSW: Study of shock wave focusing and reflection over symmetrical axis of a compact vertical co-axial diaphragmless shock tube., p. 1550-1557.
16.
16.S. H. R. Hosseini and K. Takayama, Shock Waves 20, 1 (2010).
http://dx.doi.org/10.1007/s00193-009-0227-5
17.
17.B. W. Skews, N. Menon, M. Bredin, and E. V. Timofeev, Shock Waves 11, 323 (2002).
http://dx.doi.org/10.1007/s001930100115
18.
18.V. A. Levin, J. N. Nechaev, and A. I. Tarasov, High-Speed Deflagration and Detonation: Fundamentals and Control: A new approach to organizing operation cycles in pulse detonation engines (Moscow, Russia, 2001), p. 223-238.
19.
19.O. V. Achasov and O. G. Panyazkov, High-Speed Deflagration and Detonation: Fundamentals and Control: Some gasdynamic methods for control of detonation initiation and propagation (Moscow, Russia, 2001), p. 31-44.
20.
20.I. A. Leyva, V. Tangirala, and A. J. Dean, 41st Aerospace Sciences Meeting and Exhibit: Investigation of unsteady flow field in a 2-Stage PDE resonator (Reno, Nevada, (2003) p. 1-9.
21.
21.L. Z. Jack, D. Ralf, E. Joseph, and D. I. Pullin, J. Computat. Phys. 230, 7598 (2011).
http://dx.doi.org/10.1016/j.jcp.2011.06.016
22.
22.M. Berger, Ph.D. thesis, Stanford University, California, 1982.
23.
23.R. Deiterding, Ph.D. thesis, Brandenburgische Technische University, Cottbus, 2003.
24.
24.R. Deiterding, ESAIM: PROCEEDING 34, 97 (2011).
http://dx.doi.org/10.1051/proc/201134002
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947191
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947191
2016-04-15
2016-09-25

Abstract

Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP) Runge-Kutta method, third-order weighed essential non-oscillation (WENO) scheme and adaptive mesh refinement (AMR) algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing) were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947191.html;jsessionid=cR_wKrBTOzJGal-jZ02UJX-_.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947191&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947191'
Right1,Right2,Right3,