Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947193
1.
1.F. Qian, Y. Li, S. Gradečk, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004).
http://dx.doi.org/10.1021/nl0487774
2.
2.T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nat. Mater. 3, 524 (2004).
http://dx.doi.org/10.1038/nmat1177
3.
3.X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
http://dx.doi.org/10.1021/ja993713u
4.
4.S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
5.
5.W. Bergbauer, M. Strassburg, C. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H. H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305201
6.
6.H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Exp. 1, 124002 (2008).
http://dx.doi.org/10.1143/APEX.1.124002
7.
7.R. Koester, J. S. Hwang, C. Durand, D. L. Dang, and J. Eymery, Nanotechnology 21, 015602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015602
8.
8.R. Koester, J. S. Hwang, D. Salomon, X. Chen, C. Bougerol, J. P. Barnes, D. L. Dang, L. Rigutti, A. L. Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
http://dx.doi.org/10.1021/nl202686n
9.
9.X. Wang, S. Li, S. Fündling, H. Wehmann, M. Strassburg, H. Lugauer, U. Steegmüller, and A. Waag, J. Phys. D: Appl. Phys. 46, 205101 (2013).
http://dx.doi.org/10.1088/0022-3727/46/20/205101
10.
10.H. M. Kim, Y. H. Cho, H. S. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
http://dx.doi.org/10.1021/nl049615a
11.
11.H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
12.
12.Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Science 337, 450 (2012).
http://dx.doi.org/10.1126/science.1223504
13.
13.B. O. Jung, S. Y. Bae, S. Y. Kim, S. A. Lee, J. Y. Lee, D. S. Lee, Y. Kato, Y. Honda, and H. Amano, Nano Energy 11, 294 (2015).
http://dx.doi.org/10.1016/j.nanoen.2014.11.003
14.
14.K. S. Im, Y. W. Jo, J. H. Lee, S. Cristoloveanu, and J. H. Lee, IEEE Electron Device Lett. 34, 381 (2013).
http://dx.doi.org/10.1109/LED.2013.2240372
15.
15.S. K. Lim, S. Crawford, and S. Gradečak, Nanotechnology 21, 345604 (2010).
http://dx.doi.org/10.1088/0957-4484/21/34/345604
16.
16.T. R. Kuykendall, M. V. Altoe, D. F. Ogletree, and S. Aloni, Nano Lett. 14, 6767 (2014).
http://dx.doi.org/10.1021/nl502079v
17.
17.S. M. Ko, S. H. Gong, and Y. H. Cho, Nano Lett. 14, 4937 (2014).
http://dx.doi.org/10.1021/nl5007905
18.
18.T. Aschenbrenner, C. Kruse, G. Kunert, S. Figge, K. Sebald, J. Kalden, T. Voss, J. Gutowski, and D. Hommel, Nanotechnology 20, 075604 (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075604
19.
19.Y. Wu, X Yan, X. Zhang, and X. Ren, Opt. Express 23, 1603 (2015).
http://dx.doi.org/10.1364/OE.23.0A1603
20.
20.R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 87, 231110 (2005).
http://dx.doi.org/10.1063/1.2139841
21.
21.S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, and M. Kneissl, J. Cryst. Growth 312, 2171 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.04.043
22.
22.M. Frentrup, S. Ploch, M. Pristovsek, and M. Kneissl, Phys. Status. Solidi (b) 248, 583 (2011).
http://dx.doi.org/10.1002/pssb.201046489
23.
23.K. S. Lee, S. R. Chae, J. J. Jang, D. H. Min, J. H. Kim, D. Y. Eom, Y. S. Yoo, Y. H. Cho, and O. H. Nam, Nanotechnology 26, 335601 (2015).
http://dx.doi.org/10.1088/0957-4484/26/33/335601
24.
24.S. R. Chae, K. S. Lee, J. J. Jang, D. H. Min, J. H. Kim, and O. H. Nam, J. Cryst. Growth 409, 65 (2015).
http://dx.doi.org/10.1016/j.jcrysgro.2014.09.040
25.
25.P. Vennéguès, T. Zhu, D. Martin, and N. Grandjean, J. Appl. Phys. 108, 113521 (2010).
http://dx.doi.org/10.1063/1.3514095
26.
26.H. H. Park, X. Zhang, Y. Cho, D. W. Kim, J. D. Kim, K. W. Lee, J. H. Choi, H. K. Lee, S. H. Jung, E. J. Her, C. H. Kim, A. Y. Moon, C. S. Shin, H. B. Shin, H. K. Sung, K. H. Park, H. H. Park, H. J. Kim, and H. K. Kang, Opt. Express 22, A723 (2014).
http://dx.doi.org/10.1364/OE.22.00A723
27.
27.P. Vennéguès, Z. Bougrioua, and T. Guehne, Jpn. J. Appl. Phys. 46, 4089 (2007).
http://dx.doi.org/10.1143/JJAP.46.4089
28.
28.P. Vennéguès and B. Beaumont, Appl. Phys. Lett. 75, 4115 (1999).
http://dx.doi.org/10.1063/1.125554
29.
29.J. H. Choi and D. Y. Kim, J. Am. Ceram. Soc 80, 62 (1997).
http://dx.doi.org/10.1111/j.1151-2916.1997.tb02791.x
30.
30.D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Jeselevich, ACS nano 6, 6433 (2012).
http://dx.doi.org/10.1021/nn3020695
31.
31.Q. Sun, C. Yerino, T. S. Ko, Y. S. Cho, I. H. Lee, J. Han, and M. Coltrin, J. Appl. Phys 104, 093523 (2008).
http://dx.doi.org/10.1063/1.3009969
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947193
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947193
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947193
2016-04-18
2016-09-30

Abstract

In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) -sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10] direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial -GaN plane layer. It was confirmed that a thin layer of -GaN was formed on -facet nanogrooves of the -sapphire substrate by nitridation. The interfacial -GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial -GaN layer on -sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947193.html;jsessionid=A-qC5XBDC_92afOz_HqoQVyg.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947193&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947193'
Right1,Right2,Right3,