Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Qian, Y. Li, S. Gradečk, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004).
2.T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nat. Mater. 3, 524 (2004).
3.X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
4.S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
5.W. Bergbauer, M. Strassburg, C. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H. H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
6.H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Exp. 1, 124002 (2008).
7.R. Koester, J. S. Hwang, C. Durand, D. L. Dang, and J. Eymery, Nanotechnology 21, 015602 (2010).
8.R. Koester, J. S. Hwang, D. Salomon, X. Chen, C. Bougerol, J. P. Barnes, D. L. Dang, L. Rigutti, A. L. Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
9.X. Wang, S. Li, S. Fündling, H. Wehmann, M. Strassburg, H. Lugauer, U. Steegmüller, and A. Waag, J. Phys. D: Appl. Phys. 46, 205101 (2013).
10.H. M. Kim, Y. H. Cho, H. S. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
11.H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
12.Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Science 337, 450 (2012).
13.B. O. Jung, S. Y. Bae, S. Y. Kim, S. A. Lee, J. Y. Lee, D. S. Lee, Y. Kato, Y. Honda, and H. Amano, Nano Energy 11, 294 (2015).
14.K. S. Im, Y. W. Jo, J. H. Lee, S. Cristoloveanu, and J. H. Lee, IEEE Electron Device Lett. 34, 381 (2013).
15.S. K. Lim, S. Crawford, and S. Gradečak, Nanotechnology 21, 345604 (2010).
16.T. R. Kuykendall, M. V. Altoe, D. F. Ogletree, and S. Aloni, Nano Lett. 14, 6767 (2014).
17.S. M. Ko, S. H. Gong, and Y. H. Cho, Nano Lett. 14, 4937 (2014).
18.T. Aschenbrenner, C. Kruse, G. Kunert, S. Figge, K. Sebald, J. Kalden, T. Voss, J. Gutowski, and D. Hommel, Nanotechnology 20, 075604 (2009).
19.Y. Wu, X Yan, X. Zhang, and X. Ren, Opt. Express 23, 1603 (2015).
20.R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 87, 231110 (2005).
21.S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, and M. Kneissl, J. Cryst. Growth 312, 2171 (2010).
22.M. Frentrup, S. Ploch, M. Pristovsek, and M. Kneissl, Phys. Status. Solidi (b) 248, 583 (2011).
23.K. S. Lee, S. R. Chae, J. J. Jang, D. H. Min, J. H. Kim, D. Y. Eom, Y. S. Yoo, Y. H. Cho, and O. H. Nam, Nanotechnology 26, 335601 (2015).
24.S. R. Chae, K. S. Lee, J. J. Jang, D. H. Min, J. H. Kim, and O. H. Nam, J. Cryst. Growth 409, 65 (2015).
25.P. Vennéguès, T. Zhu, D. Martin, and N. Grandjean, J. Appl. Phys. 108, 113521 (2010).
26.H. H. Park, X. Zhang, Y. Cho, D. W. Kim, J. D. Kim, K. W. Lee, J. H. Choi, H. K. Lee, S. H. Jung, E. J. Her, C. H. Kim, A. Y. Moon, C. S. Shin, H. B. Shin, H. K. Sung, K. H. Park, H. H. Park, H. J. Kim, and H. K. Kang, Opt. Express 22, A723 (2014).
27.P. Vennéguès, Z. Bougrioua, and T. Guehne, Jpn. J. Appl. Phys. 46, 4089 (2007).
28.P. Vennéguès and B. Beaumont, Appl. Phys. Lett. 75, 4115 (1999).
29.J. H. Choi and D. Y. Kim, J. Am. Ceram. Soc 80, 62 (1997).
30.D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Jeselevich, ACS nano 6, 6433 (2012).
31.Q. Sun, C. Yerino, T. S. Ko, Y. S. Cho, I. H. Lee, J. Han, and M. Coltrin, J. Appl. Phys 104, 093523 (2008).

Data & Media loading...


Article metrics loading...



In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) -sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10] direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial -GaN plane layer. It was confirmed that a thin layer of -GaN was formed on -facet nanogrooves of the -sapphire substrate by nitridation. The interfacial -GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial -GaN layer on -sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd