Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947203
2.
2.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
3.
3.A. R. Murphy and J. M. J. Fréchet, Chem. Rev. 107, 1066 (2007).
http://dx.doi.org/10.1021/cr0501386
4.
4.G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
http://dx.doi.org/10.1002/adma.200903559
5.
5.V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
6.
6.A. Troisi, Adv. Mater. 19, 2000 (2007).
http://dx.doi.org/10.1002/adma.200700550
7.
7.S. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, and H. Ishii, Phys. Rev. Lett. 104, 156401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.156401
8.
8.M. Uno, Y. Tominari, M. Yamagishi, I. Doi, E. Miyazaki, K. Takimiya, and J. Takeya, Appl. Phys. Lett. 94, 223308 (2009).
http://dx.doi.org/10.1063/1.3153119
9.
9.H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature (London) 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
10.
10.J. Soeda, T. Uemura, Y. Mizuno, A. Nakao, Y. Nakazawa, A. Facchetti, and J. Takeya, Adv. Mater. 23, 3681 (2011).
http://dx.doi.org/10.1002/adma.201101467
11.
11.H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, and K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.247601
12.
12.V. Kalihari, E. B. Tadmor, G. Haugstad, and C. D. Frisbie, Adv. Mater. 20, 4033 (2008).
http://dx.doi.org/10.1002/adma.200801834
13.
13.T. Izawa, E. Miyazaki, and T. Takimiya, Adv. Mater. 20, 3388 (2008).
http://dx.doi.org/10.1002/adma.200800799
14.
14.Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014).
15.
15.Y. Yang and A. J. Heeger, Nature (London) 372, 344 (1994).
http://dx.doi.org/10.1038/372344a0
16.
16.K. Kudo, D. X. Wang, M. Lizuka, S. Kuniyoshi, and K. Tanaka, Thin Solid Films 331, 51 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00945-6
17.
17.Y. Watanabe, H. Iechi, and K. Kudo, Jpn. J. Appl. Phys. 45, 3968 (2006).
18.
18.L. P. Ma and Y. Yang, Appl. Phys. Lett. 85, 5084 (2004).
http://dx.doi.org/10.1063/1.1821629
19.
19.K. Nakayama, S. Fujimoto, and M. Yokoyama, Appl. Phys. Lett. 88, 153512 (2006).
http://dx.doi.org/10.1063/1.2195947
20.
20.K. Nakayama, S. Fujimoto, and M. Yokoyama, Org. Electron. 10, 543 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.003
21.
21.C. Y. Yang, T. M. Ou, S. S. Cheng, M. C. Wu, S. Y. Lin, I. M. Chan, and Y. J. Chan, Appl. Phys. Lett. 89, 183511 (2006).
http://dx.doi.org/10.1063/1.2374875
22.
22.Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng, H.-K. Tsai, and S.-Fu Horng, Appl. Phys. Lett. 97, 223307 (2010).
http://dx.doi.org/10.1063/1.3513334
23.
23.L. Rossi, K. F. Seidel, W. S. Machado, and I. Hümmelgen, J. Appl. Phys. 110, 094508 (2011).
http://dx.doi.org/10.1063/1.3660406
24.
24.A. J. Ben-Sasson, Z. Chen, A. Facchetti, and N. Tessler, Appl. Phys. Lett. 100, 263306 (2012).
http://dx.doi.org/10.1063/1.4731774
25.
25.J. H. Kim, H. Yu, R. Liu, D. Y. Kim, and F. So, Small 10, 3650 (2014).
http://dx.doi.org/10.1002/smll.201303959
26.
26.P.-Y. Chang, S.-F. Peng, Y.-C. Chao, H.-C. Lin, H.-W. Zan, and H.-F. Meng, Appl. Phys. Lett. 106, 153301 (2015).
http://dx.doi.org/10.1063/1.4917562
27.
27.S. Hasegawa, T. Mori, K. Imaeda, S. Tanaka, Y. Yamashita, H. lnokuchi, H. Fujimoto, K. Seki, and N. Ueno, J. Chem. Phys. 100, 6969 (1994).
http://dx.doi.org/10.1063/1.467013
28.
28.K. Imaeda, Y. Yamashita, Y. Li, T. Mori, H. Inokuchi, and M. Sano, J. Mater. Chem. 2, 115 (1992).
http://dx.doi.org/10.1039/jm9920200115
29.
29.J. Xue, J. Qin, P. V. Bedworth, K. Kustedjo, S. R. Marder, and S. R. Forrest, Org. Electron. 2, 143 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00020-9
30.
30.J. Huang and M. Kertesz, J. Phys. Chem. B 109, 12891 (2005).
http://dx.doi.org/10.1021/jp0513869
31.
31.H. Yamane, S. Kera, K. K. Okudaira, D. Yoshimura, K. Seki, and N. Ueno, Phys. Rev. B 68, 033102 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.033102
32.
32.G. N. Gavrila, H. Mendez, T. U. Kampen, D. V. Vyalikh, W. Braun, and D. R. T. Zahn, Appl. Phys. Lett. 85, 4657 (2004).
http://dx.doi.org/10.1063/1.1800273
33.
33.N. Ueno and S. Kera, Prog. Surf. Sci. 83, 490 (2008).
http://dx.doi.org/10.1016/j.progsurf.2008.10.002
34.
34.V. Coropceanu, J. Cornil, D. A. Silva, Y. Olivier, R. Silbey, and J. L. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
35.
35.T. Uemura, K. Nakayama, Y. Hirose, J. Soeda, M. Uno, W. Li, M. Yamagishi, Y. Okada, and J. Takeya, Curr. Appl. Phys. 12, S87 (2012).
http://dx.doi.org/10.1016/j.cap.2012.05.046
36.
36.H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, and N. Ueno, Phys. Rev. B 73, 245310 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245310
37.
37.H. Li, B. C-K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, J. Am. Chem. Soc. 134, 2760 (2012).
http://dx.doi.org/10.1021/ja210430b
38.
38.H. Yamane, Y. Yabuuchi, H. Fukagawa, S. Kera, K. K. Okudaira, and N. Ueno, J. Appl. Phys. 99, 093705 (2006).
http://dx.doi.org/10.1063/1.2192978
39.
39.S. Kera, H. Yamane, and N. Ueno, Prog. Surf. Sci. 84, 135 (2009).
http://dx.doi.org/10.1016/j.progsurf.2009.03.002
40.
40.J.-M. Themlin, S. Bouzidi, F. Coletti, J.-M. Debever, G. Gensterblum, Li-Ming Yu, J.-J. Pireaux, and P. A. Thiry, Phys. Rev. B 46, 15602(R (1992).
http://dx.doi.org/10.1103/PhysRevB.46.15602
41.
41.S. Fujimoto, K. Nakayama, and M. Yokoyama, Appl. Phys. Lett. 87, 133053 (2005).
http://dx.doi.org/10.1063/1.2061866
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947203
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947203
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947203
2016-04-15
2016-09-29

Abstract

A high-performance vertical-type organic transistor has been fabricated using bis(l,2,5-thiadiazolo)--quinobis(l,3-dithiole) (BTQBT) for the channel layer. The BTQBT molecules are oriented horizontally, with the molecular plane of each monolayer parallel to the substrate. The π–π stacking direction of the BTQBT molecules is aligned with the carrier transport direction in this vertical transistor. The modulated drain current density exceeded 1 A cm−2 upon the application of a gate voltage of less than 5 V. In addition, the device exhibits a high on/off current ratio of over 105.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947203.html;jsessionid=yc0onc957KDe8Vld4q8lHf-p.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947203&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947203&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947203'
Right1,Right2,Right3,