Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947276
1.
1.F. Olofson and L. Holmlid, Nucl. Instr. Meth. B 278, 34 (2012).
http://dx.doi.org/10.1016/j.nimb.2012.01.036
2.
2.L. Holmlid, Int. J. Mass Spectrom 351, 61 (2013).
http://dx.doi.org/10.1016/j.ijms.2013.04.006
3.
3.L. Holmlid, Int. J. Mass Spectrom. 352, 1 (2013).
http://dx.doi.org/10.1016/j.ijms.2013.08.003
4.
4.S. Badiei, P. U. Andersson, and L. Holmlid, Phys. Scripta 81, 045601 (2010).
http://dx.doi.org/10.1088/0031-8949/81/04/045601
5.
5.P. U. Andersson and L. Holmlid, Phys. Lett. A 375, 1344 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.035
6.
6.P. U. Andersson, L. Holmlid, and S.R. Fuelling, J. Supercond. Novel Magn. 25, 873 (2012).
http://dx.doi.org/10.1007/s10948-011-1371-6
7.
7.L. Holmlid and S.R. Fuelling, J. Cluster Science 26, 1153 (2015).
http://dx.doi.org/10.1007/s10876-014-0804-3
8.
8.S. Badiei, P. U. Andersson, and L. Holmlid, Appl. Phys. Lett. 96, 124103 (2010).
http://dx.doi.org/10.1063/1.3371718
9.
9.P. U. Andersson, B. Lönn, and L. Holmlid, Rev. Sci. Instrum. 82, 013503 (2011).
http://dx.doi.org/10.1063/1.3514985
10.
10.L. Holmlid, Int. J. Mass Spectrom 304, 51 (2011).
http://dx.doi.org/10.1016/j.ijms.2011.04.001
11.
11.F. Olofson and L. Holmlid, J. Appl. Phys. 111, 123502 (2012).
http://dx.doi.org/10.1063/1.4729078
12.
12.T. Guénault, Basic Superfluids (Taylor & Francis, London, 2003).
13.
13.L. Holmlid, Chem. Phys 237, 11 (1998).
http://dx.doi.org/10.1016/S0301-0104(98)00259-6
14.
14.L. Holmlid, J. Cluster Sci 23, 5 (2012).
http://dx.doi.org/10.1007/s10876-011-0417-z
15.
15.E. A. Manykin, M. I. Ojovan, and P. P. Poluektov, Proc. SPIE 6181, 618105 (2006).
http://dx.doi.org/10.1117/12.675004
16.
16.É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Sov. Phys. JETP 75, 440 (1992).
17.
17.F. Winterberg, J. Fusion Energ 29, 317 (2010).
http://dx.doi.org/10.1007/s10894-010-9280-4
18.
18.F. Winterberg, Phys. Lett. A 374, 2766 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.04.055
19.
19.L. Berezhiani, G. Gabadadze, and D. Pirtskhalava, J. High Energy Phys 4, 94 (2011).
20.
20.J. E. Hirsch, Physica C 470, 635 (2010).
http://dx.doi.org/10.1016/j.physc.2010.06.005
21.
21.G. R. Meima and P. G. Menon, Appl. Catal. A 212, 239 (2001).
http://dx.doi.org/10.1016/S0926-860X(00)00849-8
22.
22.M. Muhler, R. Schlögl, and G. Ertl, J. Catal 138, 413 (1992).
http://dx.doi.org/10.1016/0021-9517(92)90295-S
23.
23.L. Holmlid, J. Clust. Sci. 23, 95 (2012).
http://dx.doi.org/10.1007/s10876-011-0387-1
24.
24.S. Badiei, P. U. Andersson, and L. Holmlid, Int. J. Mass Spectrom 282, 70 (2009).
http://dx.doi.org/10.1016/j.ijms.2009.02.014
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947276
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947276
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947276
2016-04-18
2016-09-29

Abstract

Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H() as well as small symmetric clusters H(0) and H(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947276.html;jsessionid=zxlhcmi6ipEwhsWm6Oe96myV.x-aip-live-06?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947276&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947276&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947276'
Right1,Right2,Right3,