Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947298
1.
1.J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175 (1957).
http://dx.doi.org/10.1103/PhysRev.108.1175
2.
2.for a recent review, please see, J. P. Carbotte, La Physique au Canada 67, 75 (2011).
3.
3.High Temperature Superconductivity, edited by K. S. Bedell, D. Coffey, D. E. Meltzer, D. Pines, and J. R. Schrieffer (Addison-Wesley, New York, 1990).
4.
4.J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010);
http://dx.doi.org/10.1038/nphys1759
4.G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.1589
5.
5.The Physics of Organic Superconductors and Conductors, edited by Andrei Lebed (Springer, Berlin, 2008).
6.
6.S. H. Khim, B. S. Lee, K.-Y. Choi, B.-G. Jeon, D. H. Jang, D. Patil, S. Patil, R. Y. Kim, E. S. Choi, S. S. Lee, J. J. Yu, and K. H. Kim, New J. Phys. 15, 123031 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/123031
7.
7.Q. Zhang, G. Li, D. Rhodes, A. Kiswandhi, T. Besara, B. Zneg, J. Sun, T. Siegrist, M. D. Johannes, and L. Balicas, Sci. Rep. 3, 1446 (2013).
8.
8.H. Y. Yu, M. Zuo, L. Zhang, S. Tan, C. J. Zhang, and Y. H. Zhang, J. Am. Chem. Soc. 135, 12987 (2013).
http://dx.doi.org/10.1021/ja4062079
9.
9.Y. F. Lu, T. Takayama, A. F. Bangura, Y. Katsura, D. Hashizume, and H. Takagi, J. Phys. Soc. Jpn. 83, 023702 (2014).
http://dx.doi.org/10.7566/JPSJ.83.023702
10.
10.Q. R. Zhang, D. Rhodes, B. Zeng, T. Besara, T. Siegrist, M. D. Johannes, and L. Balicas, Phys. Rev. B 88, 024508 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024508
11.
11.J. Pan, W. H. Jiao, X. C. Hong, Z. Zhang, L. P. He, P. L. Cai, J. Zhang, G. H. Cao, and S. Y. Li, arXiv:1404.0371.
12.
12.T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
http://dx.doi.org/10.1088/0034-4885/62/1/002
13.
13.P. K. Biswas, H. Luetkens, X. F. Xu, J. H. Yang, C. Baines, A. Amato, and E. Morenzoni, Phys. Rev. B 91, 100504(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.91.100504
14.
14.G. Goll, Adv. In Solid State Phys. 45, 213 (2005).
http://dx.doi.org/10.1007/11423256_17
15.
15.M. M. Qazilbash, A. Biswas, Y. Dagan, R. A. Ott, and R. L. Greene, Phys. Rev. B 68, 024502 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.024502
16.
16.Y. Bugoslavsky, Y. Miyoshi, G. K. Perkins, A. V. Bernov, Z. Lockman, J. L. MacManus-Driscoll, L. F. Cohen, A. D. Caplin, H. Y. Zhai, M. P. Paranthaman, and H. M. Christen, Supercond. Sci. Tech. 15, 526 (2002).
http://dx.doi.org/10.1088/0953-2048/15/4/308
17.
17.W.K. Park, J.L. Sarrao, J.D. Thompson, and L.H. Greene, Phys. Rev. Lett. 100, 177001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.177001
18.
18.X. H. Zhang et al., Phys. Rev. B 82, 020515R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.020515
19.
19.A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
20.
20.T. T. Chen and J.G. Adler, Solid State Commun. 8, 1965 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90669-1
21.
21.G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.4515
22.
22.R.C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1509
23.
23.J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik, Phys. Rev. Lett. 81, 2542 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2542
24.
24.L. Alff, H. Takashima, S. Kashiwaya, N. Terada, H. Ihara, Y. Tanaka, M. Koyanagi, and K. Kajimura, Phys. Rev. B 55, 14757(R) (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R14757
25.
25.D. Daghero, M. Tortello, GT. A. Ummarino, J.-C. Griveau, E. Colineau, R. Eloirdi, A. B. Shick, J. Kolorenc, A. I. Lichtenstein, and R. Caciuffo, Nature Commun. 3, 786 (2012).
http://dx.doi.org/10.1038/ncomms1785
26.
26.P. Xiong, G. Xiao, and R. B. Laibowitz, Phys. Rev. Lett. 71, 1907 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1907
27.
27.P. Samuely, Z. Pribulova, P. Szabo, G. Pristas, S. L. Bud’ko, and P. C. Canfield, Physica C 469, 507 (2009).
http://dx.doi.org/10.1016/j.physc.2009.03.037
28.
28.P.M.C. Rourke, M. A. Tanatar, C. S. Turel, J. Berdeklis, C. Petrovic, and J. Y. T. Wei, Phys. Rev. Lett. 94, 107005 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.107005
29.
29.K. Jin, G. He, X. H. Zhang, S. Maruyama, S. Yasui, R. Suchoski, J. M. Shin, Y. P. Jiang, H. S. Yu, L. Shan, R. L. Greene, and I. Takeuchi, Nature Commun. 6, 7183 (2015).
http://dx.doi.org/10.1038/ncomms8183
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947298
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947298
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947298
2016-04-18
2016-12-07

Abstract

We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D) superconductorNbPdSe (Tc ∼ 5.5 K). The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor.Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK) model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/T) for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated -wave superconductors. We argue that the anisotropicsuperconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947298.html;jsessionid=xb6qcXnshqVGhOQG1CfnwkqK.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947298&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947298&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947298'
Right1,Right2,Right3,