Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947572
1.
1.F.R. Young, Cavitation (Imperial College Press, London, 1999).
2.
2.K. Yasui, A. Towata, T. Tuziuti, T. Kozuka, and K. Kato, J. Acoust. Soc. Am 130, 3233 (2011).
http://dx.doi.org/10.1121/1.3626130
3.
3.S. Merouani, O. Hamdaoui, Y. Rezgui, and M. Guemini, Ultrasonics. 54, 227 (2014).
http://dx.doi.org/10.1016/j.ultras.2013.04.014
4.
4.E.J. Hart and A. Henglein, J. Phys. Chem. 90, 5992 (1986).
http://dx.doi.org/10.1021/j100280a105
5.
5.A. Henglein and M. Gutiérrez, J. Phys. Chem. 97, 158 (1993).
http://dx.doi.org/10.1021/j100103a027
6.
6.D.L. Goldfarb, H.R. Corti, F. Marken, and R.G. Compton, J. Phys. Chem. A 102, 8888 (1998).
http://dx.doi.org/10.1021/jp9815964
7.
7.B.-K. Kang, M.-S. Kim, and J.-G. Park, Ultrason. Sonochem. 21, 1496 (2014).
http://dx.doi.org/10.1016/j.ultsonch.2014.01.012
8.
8.H. Soyama, in Proc. 8th. Inter. Symp. Cavitation (2012), p. 788.
http://dx.doi.org/10.3850/978-981-07-2826-7_101
9.
9.T. Tuziuti, S. Hatanaka, K. Yasui, T. Kozuka, and H. Mitome, J. Chem. Phys. 116, 6221 (2002).
http://dx.doi.org/10.1063/1.1461357
10.
10.K. Yasui, T. Tuziuti, Y. Iida, and H. Mitome, J. Chem. Phys. 119, 346 (2003).
http://dx.doi.org/10.1063/1.1576375
11.
11.D.F. Gaitan, R.A. Tessien, R.A. Hiller, J. Gutierrez, C. Scott, H. Tardif, and B. Callahan, J. Acoust. Soc. Am. 127, 3456 (2010).
http://dx.doi.org/10.1121/1.3377062
12.
12.R.H. Jawale, P.R. Gogate, and A.B. Pandit, Ultrason. Sonochem. 21, 1392 (2014).
http://dx.doi.org/10.1016/j.ultsonch.2014.01.025
13.
13.K.R. Morison and C.A. Hutchinson, Ultrason. Sonochem. 16, 176 (2009).
http://dx.doi.org/10.1016/j.ultsonch.2008.07.001
14.
14.H. Soyama and T. Muraoka, in Proc. 20th Inter. Conf. Water Jetting (2010), p. 259.
15.
15.S. Shimizu, K. Tanioka, and N. Ikegami, J. Japan Hydraulics Pneumatics Soc. 28, 778 (1997).
http://dx.doi.org/10.5739/jfps1970.28.778
16.
16.H. Soyama, J. Soc. Mater. Sci., Japan 47, 381 (1998).
http://dx.doi.org/10.2472/jsms.47.381
17.
17.J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials (Springer-Verlag, Berlin, 1990).
18.
18.S. Nishimura, O. Takakuwa, and H. Soyama, J. Fluid Sci. Technol. 7, 405 (2012).
http://dx.doi.org/10.1299/jfst.7.405
19.
19.K. Yasui, Y. Iida, T. Tuziuti, T. Kozuka, and A. Towata, Phys. Rev. E 77, 016609 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.016609
20.
20.K. Yasui, J. Lee, T. Tuziuti, A. Towata, T. Kozuka, and Y. Iida, J. Acoust. Soc. Am. 126, 973 (2009).
http://dx.doi.org/10.1121/1.3179677
21.
21.C. Sehgal, R.G. Sutherland, and R.E. Verrall, J. Phys. Chem. 84, 388 (1980).
http://dx.doi.org/10.1021/j100441a009
22.
22.K. Yasui, T. Tuziuti, M. Sivakumar, and Y. Iida, Appl. Spctrosc. Rev. 39, 399 (2004).
http://dx.doi.org/10.1081/ASR-200030202
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947572
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947572
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947572
2016-04-21
2016-12-08

Abstract

In this paper, we used a Venturi tube for generating hydrodynamiccavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitationbubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947572.html;jsessionid=MeO3LLaEvbOafB8ir0RIriDi.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947572&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947572&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947572'
Right1,Right2,Right3,