Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948313
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
3.
3.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4.L. Qu, Y. Liu, J. B. Baek, and L. Dai, ACS Nano 4, 1321 (2010).
http://dx.doi.org/10.1021/nn901850u
5.
5.F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, Science 347, 1246501 (2015).
http://dx.doi.org/10.1126/science.1246501
6.
6.F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, Nature Nanotech. 4, 839 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
7.
7.F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nature Nanotech. 9, 780 (2014).
http://dx.doi.org/10.1038/nnano.2014.215
8.
8.A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang, J. Zou et al., ACS Nano 5, 7812 (2011).
http://dx.doi.org/10.1021/nn201809k
9.
9.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
10.
10.F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
11.
11.L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010).
http://dx.doi.org/10.1038/nature09405
12.
12.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
13.
13.S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.016602
14.
14.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
15.
15.F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Nature Photon. 8, 899 (2014).
http://dx.doi.org/10.1038/nphoton.2014.271
16.
16.Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
17.
17.R. F. Service, Science 348, 490 (2015).
http://dx.doi.org/10.1126/science.348.6234.490
18.
18.E. Gibney, Nature 522, 274 (2015).
http://dx.doi.org/10.1038/522274a
19.
19.X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 768 (2009).
http://dx.doi.org/10.1126/science.1170335
20.
20.X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
21.
21.X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
22.
22.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
23.
23.K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nature Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
24.
24.L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).
http://dx.doi.org/10.1126/science.1154663
25.
25.K. A. Ritter and J. W. Lyding, Nature Mater. 8, 235 (2009).
http://dx.doi.org/10.1038/nmat2378
26.
26.R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan et al., Nature Commun. 4, 2943 (2013).
27.
27.D. Akinwande, N. Petrone, and J. Hone, Nature Commun. 5, 5678 (2014).
http://dx.doi.org/10.1038/ncomms6678
28.
28.J. Song and H. Zeng, Angew. Chem. Int. Edit. 54, 9760 (2015).
http://dx.doi.org/10.1002/anie.201501233
29.
29.C. Tan, Z. Liu, W. Huang, and H. Zhang, Chem. Soc. Rev. 44, 2615 (2015).
http://dx.doi.org/10.1039/C4CS00399C
30.
30.Q. Zhang, J. Jie, S. Diao, Z. Shao, Q. Zhang, L. Wang, W. Deng, W. Hu, H. Xia, X. Yuan et al., ACS Nano 9, 1561 (2015).
http://dx.doi.org/10.1021/acsnano.5b00437
31.
31.H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100, 123104 (2012).
http://dx.doi.org/10.1063/1.3696045
32.
32.J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell et al., Nature Commun. 6, 7081 (2015).
http://dx.doi.org/10.1038/ncomms8081
33.
33.H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, Nature 460, 371 (2009).
http://dx.doi.org/10.1038/nature08131
34.
34.C. J. Docherty, C. T. Lin, H. J. Joyce, R. J. Nicholas, L. M. Herz, L. J. Li, and M. B. Johnston, Nature Commun. 3, 1228 (2012).
http://dx.doi.org/10.1038/ncomms2235
35.
35.C. Biswas, F. Güneş, D. D. Loc, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, Nano Lett. 11, 4682 (2011).
http://dx.doi.org/10.1021/nl202266h
36.
36.A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong, and N. Gedik, Phys. Rev. Lett. 113, 056602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.056602
37.
37.S. F. Shi, T. T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, Nano Lett. 14, 1578 (2014).
http://dx.doi.org/10.1021/nl404826r
38.
38.J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, Nano Lett. 11, 4902 (2011).
http://dx.doi.org/10.1021/nl202800h
39.
39.P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Nano Lett. 8, 4248 (2008).
http://dx.doi.org/10.1021/nl8019399
40.
40.K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Nature Phys. 9, 248 (2013).
http://dx.doi.org/10.1038/nphys2564
41.
41.M. Freitag, T. Low, F. Xia, and P. Avouris, Nature Photon. 7, 53 (2013).
http://dx.doi.org/10.1038/nphoton.2012.314
42.
42.M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Nature Commun. 4, 1951 (2013).
http://dx.doi.org/10.1038/ncomms2951
43.
43.A. J. Frenzel, C. H. Lui, W. Fang, N. L. Nair, P. K. Herring, P. Jarillo-Herrero, J. Kong, and N. Gedik, Appl. Phys. Lett. 102, 113111 (2013).
http://dx.doi.org/10.1063/1.4795858
44.
44.G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, Nano Lett. 13, 524 (2013).
http://dx.doi.org/10.1021/nl303988q
45.
45.S. A. Jensen, Z. Mics, I. Ivanov, H. S. Varol, D. Turchinovich, F. H. L. Koppens, M. Bonn, and K. J. Tielrooij, Nano Lett. 14, 5839 (2014).
http://dx.doi.org/10.1021/nl502740g
46.
46.H. Kalita, H. V, D. B. Shinde, V. K. Pillai, and M. Aslam, Appl. Phys. Lett. 102, 143104 (2013).
http://dx.doi.org/10.1063/1.4800236
47.
47.F. Liu, T. Tang, Q. Feng, M. Li, Y. Liu, N. Tang, W. Zhong, and Y. Du, J. Appl. Phys. 115, 164307 (2014).
http://dx.doi.org/10.1063/1.4874180
48.
48.S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong, and Y. Zhou, ACS Appl. Mater. Interfaces 6, 613 (2014).
http://dx.doi.org/10.1021/am4047014
49.
49.See supplementary material at http://dx.doi.org/10.1063/1.4948313 for details of raw materials, synthesis of the GQDs, effective reduction of the GOQDs, morphology of the GOQDs and GQDs, height distribution of the GQDs, absorption spectrum of the GQDs, semiconducting nature of the GQDs, digital photo of the SiO2-Au-GQDs device, I-V characteristics and photocurrent of the GQDs device after drying and reintroducing into moisture environment, hysteresis and photoconductance of the GQDs device after drying with a subsequent overlayer encapsulation, as well as summary of hysteresis and photoconductance in the GQDs devices.[Supplementary Material]
50.
50.L. Ding, N. Liu, L. Li, X. Wei, X. Zhang, J. Su, J. Rao, C. Yang, W. Li, J. Wang et al., Adv. Mater. 27, 3525 (2015).
http://dx.doi.org/10.1002/adma.201500804
51.
51.X. Zhang, J. Jie, Z. Wang, C. Wu, L. Wang, Q. Peng, Y. Yu, P. Jiang, and C. Xie, J. Mater. Chem. 21, 6736 (2011).
http://dx.doi.org/10.1039/c1jm00035g
52.
52.B. Dzyubenko, H.-C. Lee, O. E. Vilches, and D. H. Cobden, Nature Phys. 11, 398 (2015).
http://dx.doi.org/10.1038/nphys3302
53.
53.W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3, 193 (2003).
http://dx.doi.org/10.1021/nl0259232
54.
54.D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
http://dx.doi.org/10.1021/nn301572c
55.
55.J. Maeng, W. Park, M. Choe, G. Jo, Y. H. Kahng, and T. Lee, Appl. Phys. Lett. 95, 123101 (2009).
http://dx.doi.org/10.1063/1.3232203
56.
56.X. Li, M. Rui, J. Song, Z. Shen, and H. Zeng, Adv. Funct. Mater. 25, 4929 (2015).
http://dx.doi.org/10.1002/adfm.201501250
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948313
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948313
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948313
2016-04-22
2016-12-09

Abstract

Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948313.html;jsessionid=jTHZnLqo7a5SyPkKugcWB3Jp.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948313&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948313&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948313'
Right1,Right2,Right3,