Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Verma, N. Orbey, R. W. Birkmire, and T. W. F. Russell, Progress in Photovoltaics: Research and Applications 4, 341 (1996).¡341::AID-PIP144¿3.0.CO;2-C
2.N. Orbey, H. Hichri, R. W. Birkmire, and T. W. F. Russell, Progress in Photovoltaics: Research and Applications 5, 237 (1997).¡237::AID-PIP173¿3.0.CO;2-D
3.M. Avrami, Journal of Chemical Physics 7, 1103 (1939).
4.M. Avrami, Journal of Chemical Physics 9, 177 (1941).
5.W. K. Kim, S. Kim, E. A. Payzant, S. A. Speakman, S. Yoon, R. M. Kaczynski, R. D. Acher, T. J. Anderson, O. D. Crisalle, S. S. Li, and V. Craciun, Journal of Physics and Chemistry of Solids 66, 1915 (2005).
6.M. Purwins, A. Weber, P. Berwian, G. Müller, F. Hergert, S. Jost, and R. Hock, Journal of Crystal Growth 287, 408 (2006).
7.E. Wimmer and W. Wolf, Materials Science in Semiconductor Processing 3, 3 (2000).
8.M. R. Ryzhikov, V. A. Slepkov, S. G. Kozlova, S. P. Gabuda, and V. E. Fedorov, Journal of Computational Chemistry 36, 2131 (2015).
9.D. T. Gillespie, The Journal of Physical Chemistry 81, 2340 (1977).
10.R. Erban and S. J. Chapman, Physical Biology 6, 46001 (2009).
11.P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischman, and M. Powalla, Progress in Photovoltaics: Research and Applications 19, 894 (2011).
12.A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nature Materials 12, 1107 (2013).
13.Solar Frontier, “Solar Frontier Sets Thin-Film PV World Record with 20.9% CIS Cell,” (2014).
14.W. N. Shafarman, S. Siebentritt, and L. Stolt, in Handbook of Photovoltaics, edited byA. Luque and S. Hegedus (Wiley, 2011), pp. 546592.
15.C. L. Jensen, D. E. Tarrant, J. H. Ermer, and G. A. Pollock, Proceedings of the 23rd IEEE PVSC 577 (1993).
16.G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, Journal of Applied Physics 102, 074922 (2007).
17.K. Kim, G. M. Hanket, T. Huynh, and W. N. Shafarman, Journal of Applied Physics 111, 083710 (2012).
18.S. van der Walt, S. Colbert, and G. Varoquaux, Computing in Science Engineering 13, 22 (2011).
19.F. Hergert, S. Jost, R. Hock, M. Purwins, and J. Palm, Thin Solid Films 511-512, 147 (2006).
20.J. Koo, S. C. Kim, H. Park, and W. K. Kim, Thin Solid Films 520, 1484 (2011).
21.M. Purwins, R. Enderle, M. Schmid, P. Berwian, G. Müller, F. Hergert, S. Jost, and R. Hock, Thin Solid Films 515, 5895 (2007).
22.P. Szaniawski, P. Salome, V. Fjallstrom, T. Torndahl, U. Zimmermann, and M. Edoff, IEEE Journal of Photovoltaics 5, 1775 (2015).
23.W. Witte, D. Abou-Ras, K. Albe, G. H. Bauer, F. Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg, R. Mainz, M. Meessen, M. Müller, O. Neumann, T. Orgis, S. Paetel, J. Pohl, H. Rodriguez-Alvarez, R. Scheer, H.-W. Schock, T. Unold, A. Weber, and M. Powalla, Progress in Photovoltaics: Research and Applications 23, 717 (2014).
24.M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, a. Swartzlander, and M. M. Al-Jassim, Journal of Applied Physics 82, 2896 (1997).
25.W. K. Kim, G. M. Hanket, and W. N. Shafarman, Solar Energy Materials and Solar Cells 95, 235 (2011).
26.J. O. Lloyd-Smith, PLoS ONE 2, e180 (2007).
27.D. J. Shaw, B. T. Grenfell, and A. P. Dobson, Parasitology 117, 597 (1998).
28.N. Alexander, R. Moyeed, and J. Stander, Biostatistics 1, 453 (2000).

Data & Media loading...


Article metrics loading...



Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa)(SeS)thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd