Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948404
1.
1.S. Verma, N. Orbey, R. W. Birkmire, and T. W. F. Russell, Progress in Photovoltaics: Research and Applications 4, 341 (1996).
http://dx.doi.org/10.1002/(SICI)1099-159X(199609/10)4:5¡341::AID-PIP144¿3.0.CO;2-C
2.
2.N. Orbey, H. Hichri, R. W. Birkmire, and T. W. F. Russell, Progress in Photovoltaics: Research and Applications 5, 237 (1997).
http://dx.doi.org/10.1002/(SICI)1099-159X(199707/08)5:4¡237::AID-PIP173¿3.0.CO;2-D
3.
3.M. Avrami, Journal of Chemical Physics 7, 1103 (1939).
http://dx.doi.org/10.1063/1.1750380
4.
4.M. Avrami, Journal of Chemical Physics 9, 177 (1941).
http://dx.doi.org/10.1063/1.1750872
5.
5.W. K. Kim, S. Kim, E. A. Payzant, S. A. Speakman, S. Yoon, R. M. Kaczynski, R. D. Acher, T. J. Anderson, O. D. Crisalle, S. S. Li, and V. Craciun, Journal of Physics and Chemistry of Solids 66, 1915 (2005).
http://dx.doi.org/10.1016/j.jpcs.2005.09.074
6.
6.M. Purwins, A. Weber, P. Berwian, G. Müller, F. Hergert, S. Jost, and R. Hock, Journal of Crystal Growth 287, 408 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.054
7.
7.E. Wimmer and W. Wolf, Materials Science in Semiconductor Processing 3, 3 (2000).
http://dx.doi.org/10.1016/S1369-8001(00)00004-4
8.
8.M. R. Ryzhikov, V. A. Slepkov, S. G. Kozlova, S. P. Gabuda, and V. E. Fedorov, Journal of Computational Chemistry 36, 2131 (2015).
http://dx.doi.org/10.1002/jcc.24188
9.
9.D. T. Gillespie, The Journal of Physical Chemistry 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
10.
10.R. Erban and S. J. Chapman, Physical Biology 6, 46001 (2009).
http://dx.doi.org/10.1088/1478-3975/6/4/046001
11.
11.P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischman, and M. Powalla, Progress in Photovoltaics: Research and Applications 19, 894 (2011).
http://dx.doi.org/10.1002/pip.1078
12.
12.A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nature Materials 12, 1107 (2013).
http://dx.doi.org/10.1038/nmat3789
13.
13.Solar Frontier, “Solar Frontier Sets Thin-Film PV World Record with 20.9% CIS Cell,” (2014).
14.
14.W. N. Shafarman, S. Siebentritt, and L. Stolt, in Handbook of Photovoltaics, edited byA. Luque and S. Hegedus (Wiley, 2011), pp. 546592.
15.
15.C. L. Jensen, D. E. Tarrant, J. H. Ermer, and G. A. Pollock, Proceedings of the 23rd IEEE PVSC 577 (1993).
http://dx.doi.org/10.1109/PVSC.1993.347030
16.
16.G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, Journal of Applied Physics 102, 074922 (2007).
http://dx.doi.org/10.1063/1.2787151
17.
17.K. Kim, G. M. Hanket, T. Huynh, and W. N. Shafarman, Journal of Applied Physics 111, 083710 (2012).
http://dx.doi.org/10.1063/1.4704390
18.
18.S. van der Walt, S. Colbert, and G. Varoquaux, Computing in Science Engineering 13, 22 (2011).
http://dx.doi.org/10.1109/MCSE.2011.37
19.
19.F. Hergert, S. Jost, R. Hock, M. Purwins, and J. Palm, Thin Solid Films 511-512, 147 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.11.081
20.
20.J. Koo, S. C. Kim, H. Park, and W. K. Kim, Thin Solid Films 520, 1484 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.08.052
21.
21.M. Purwins, R. Enderle, M. Schmid, P. Berwian, G. Müller, F. Hergert, S. Jost, and R. Hock, Thin Solid Films 515, 5895 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.090
22.
22.P. Szaniawski, P. Salome, V. Fjallstrom, T. Torndahl, U. Zimmermann, and M. Edoff, IEEE Journal of Photovoltaics 5, 1775 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2015.2478033
23.
23.W. Witte, D. Abou-Ras, K. Albe, G. H. Bauer, F. Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg, R. Mainz, M. Meessen, M. Müller, O. Neumann, T. Orgis, S. Paetel, J. Pohl, H. Rodriguez-Alvarez, R. Scheer, H.-W. Schock, T. Unold, A. Weber, and M. Powalla, Progress in Photovoltaics: Research and Applications 23, 717 (2014).
http://dx.doi.org/10.1002/pip.2485
24.
24.M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, a. Swartzlander, and M. M. Al-Jassim, Journal of Applied Physics 82, 2896 (1997).
http://dx.doi.org/10.1063/1.366122
25.
25.W. K. Kim, G. M. Hanket, and W. N. Shafarman, Solar Energy Materials and Solar Cells 95, 235 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.04.050
26.
26.J. O. Lloyd-Smith, PLoS ONE 2, e180 (2007).
http://dx.doi.org/10.1371/journal.pone.0000180
27.
27.D. J. Shaw, B. T. Grenfell, and A. P. Dobson, Parasitology 117, 597 (1998).
http://dx.doi.org/10.1017/s0031182098003448
28.
28.N. Alexander, R. Moyeed, and J. Stander, Biostatistics 1, 453 (2000).
http://dx.doi.org/10.1093/biostatistics/1.4.453
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948404
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948404
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948404
2016-04-26
2016-09-30

Abstract

Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa)(SeS)thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948404.html;jsessionid=K1siva8Firad284Q2A8W8oZA.x-aip-live-06?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948404&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948404'
Right1,Right2,Right3,