Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948414
1.
1.J. G. Eden and S. J. Park, Complex Plasmas (Springer, Switzerland, 2014), p. 373.
2.
2.F. Iza and J. Hopwood, Plasma Sources Sci. Technol. 14, 397 (2005).
http://dx.doi.org/10.1088/0963-0252/14/2/023
3.
3.J. Xue and J. Hopwood, IEEE Trans. on Plasma Sci. 37, 816 (2009).
http://dx.doi.org/10.1109/TPS.2009.2015453
4.
4.X. M. Zhu, J. L. Walsh, W. C. Chen, and Y. K. Pu, J. Phys. D-Appl. Phys. 45, 295201 (2012).
http://dx.doi.org/10.1088/0022-3727/45/29/295201
5.
5.J. G. Eden, Proc. of the IEEE 94, 567 (2006).
http://dx.doi.org/10.1109/JPROC.2006.870693
6.
6.M. Moisan, J. Barbeau, M. C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, Pure Appl. Chem. 74, 349 (2002).
http://dx.doi.org/10.1351/pac200274030349
7.
7.S. P. Sharma, B. A. Cruden, M. V. V. S. Rao, and A. A. Bolshakov, J. Appl. Phys. 95, 3324 (2004).
http://dx.doi.org/10.1063/1.1650921
8.
8.X. Pei, J. Liu, Y. Xin, and X. Lu, J. Phys. D: Appl. Phys. 47, 145204 (2014).
http://dx.doi.org/10.1088/0022-3727/47/14/145204
9.
9.T. Ichiki, R. Taura, and Y. Horiike, J. Appl. Phys. 95, 35 (2004).
http://dx.doi.org/10.1063/1.1630375
10.
10.J. Müller, G. Quiring, M. R. Szyba, R. M. R. Wong, and H. Wehrs, LC-MS in Drug Bioanalysis (Springer, US, 2012), p. 423.
11.
11.J. P. Hauschild, E. Wapelhorst, and J. Muller, Int. J. Mass Spectrom. 264, 53 (2007).
http://dx.doi.org/10.1016/j.ijms.2007.03.014
12.
12.J. P. Hauschild, E. Wapelhorst, and J. Muller, J. Mass Spectrom. 44, 1330 (2009).
http://dx.doi.org/10.1002/jms.1615
13.
13.M. Reinhardt, G. Quiring, R. M. R. Wong, H. Wehrs, and J. Muller, Int. J. Mass Spectrom. 295, 145 (2010).
http://dx.doi.org/10.1016/j.ijms.2010.05.013
14.
14.F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, Plasma Process. Polym. 5, 322 (2008).
http://dx.doi.org/10.1002/ppap.200700162
15.
15.Q. Wang, F. Doll, V. M. Donnelly, D. J. Economou, N. Sadeghi, and G. F. Franz, J. Phys. D: Appl. Phys. 40, 4202 (2007).
http://dx.doi.org/10.1088/0022-3727/40/14/015
16.
16.C. Lazzaroni, P. Chabert, A. Rousseau, and N. Sadeghi, Eur. Phys. J. D 60, 555 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00259-4
17.
17.B. D. Huang, X. M. Zhu, K. Takashima, and Y. K. Pu, J. Phys. D-Appl. Phys. 46, 464011 (2013).
http://dx.doi.org/10.1088/0022-3727/46/46/464011
18.
18.A. R. Hoskinson and J. Hopwood, Plasma Sources Sci. Technol. 23, 015024 (2014).
http://dx.doi.org/10.1088/0963-0252/23/1/015024
19.
19.J. Torres, J. M. Palomares, A. Sola, J. van der Mullen, and A. Gamero, J. Phys. D-Appl. Phys. 40, 5929 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/023
20.
20.Q. Wang, I. Koleva, V. M. Donnelly, and D. J. Economou, J. Phys. D-Appl. Phys. 38, 1690 (2005).
http://dx.doi.org/10.1088/0022-3727/38/11/008
21.
21.X. M. Zhu, W. C. Chen, and Y. K. Pu, J. Phys. D-Appl. Phys. 41, 105212 (2008).
http://dx.doi.org/10.1088/0022-3727/41/10/105212
22.
22.X. M. Zhu and Y. K. Pu, Plasma Sources Sci. Technol. 17, 02402 (2008).
http://dx.doi.org/10.1088/0963-0252/17/2/024002
23.
23.X. M. Zhu, W. C. Chen, J. Li, and Y. K. Pu, J. Phys. D-Appl. Phys. 42, 025203 (2009).
http://dx.doi.org/10.1088/0022-3727/42/2/025203
24.
24.J. Vlcek, J. Phys. D-Appl. Phys. 22, 623 (1989).
http://dx.doi.org/10.1088/0022-3727/22/5/009
25.
25.X. M. Zhu and Y. K. Pu, J. Phys. D-Appl. Phys. 43, 015204 (2010).
http://dx.doi.org/10.1088/0022-3727/43/1/015204
26.
26.A. Yanguas-Gil, J. Cotrino, and A. R. González-Elipe, J. Appl. Phys. 99, 033104 (2006).
http://dx.doi.org/10.1063/1.2170416
28.
28.T. Deconinck, S. Mahadevan, and L. L. Raja, IEEE Trans. on Plasma Sci. 36, 1200 (2008).
http://dx.doi.org/10.1109/TPS.2008.922922
29.
29.P. Kothnur, X. Yuan, and L. Raja, Appl. Phys. Lett. 82, 529 (2003).
http://dx.doi.org/10.1063/1.1540246
30.
30.Q. Wang, D. Economou, and V. Donnelly, J. Appl. Phys. 100, 023301 (2006).
http://dx.doi.org/10.1063/1.2214591
31.
31.E. Munoz-Serrano, G. Hagelaar, T. Callegari, J. P. Boeuf, and L. C. Pitchford, Plasma Phys. Control. Fusion 48, B391 (2006).
http://dx.doi.org/10.1088/0741-3335/48/12B/S36
32.
32.J. Schulze, Z. Donko, A. Derzsi, I. Korolov, and E. Schuengel, Plasma Sources Sci. Technol. 24, 015019 (2015).
http://dx.doi.org/10.1088/0963-0252/24/1/015019
33.
33.Y. Zhang, W. Jiang, A. Z. Zhang, and A. Bogaerts, J. Appl. Phys. 115, 193301 (2014).
http://dx.doi.org/10.1063/1.4878161
34.
34.Y. Wang, M. A. Lieberman, A. C. F. Wu, and J. P. Verboncoeur, J. Appl. Phys. 110, 033307 (2011).
http://dx.doi.org/10.1063/1.3620983
35.
35.Y. Takao, N. Kusaba, K. Eriguchi, and L. Ono, J. Appl. Phys. 108, 093309 (2010).
http://dx.doi.org/10.1063/1.3506536
36.
36.F. Iza, J. K. Lee, and M. G. Kong, Physical Review Letters 99, 075004 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.075004
37.
37.J. Choi, F. Iza, J. K. Lee, and C. M. Ryu, IEEE Trans. on Plasma Sci. 35, 1274 (2007).
http://dx.doi.org/10.1109/TPS.2007.904827
38.
38.M. Hayashi, (Institute of Plasma Physics, Nagoya University, 1981) No. IPPJ-AM-19.
39.
39.D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).
http://dx.doi.org/10.1063/1.1696957
40.
40.D. Ton-That and M.R. Flannery, Phys. Rev. A15, 517 (1977).
http://dx.doi.org/10.1103/PhysRevA.15.517
41.
41.A. V. Phelps, J. Appl. Phys. 76, 747 (1994).
http://dx.doi.org/10.1063/1.357820
42.
42.S. Sakabe and Y. Izawa, Atomic Data and Nucl. Data Tables 49, 257 (1991).
http://dx.doi.org/10.1016/0092-640X(91)90027-2
43.
43.Technical Paper of Electrical Discharge, IEEE, ED-89-72 (1989).
44.
44.A. Chutjian and D.C. Cartwright, Phys. Rev. A23, 2178 (1981).
http://dx.doi.org/10.1103/PhysRevA.23.2178
45.
45.S. T. Perkins, D. E. Cullen, M. H. Chen, and J. H. Hubbell, Atoms 1 (1991).
46.
46.C. H. Shon and T. Makabe, IEEE Trans. on Plasma Sci. 32, 390 (2004).
http://dx.doi.org/10.1109/TPS.2004.828121
47.
47.R. E. Olson, J. R. Peterson, and J. Moseley, J. Chem. Phys. 53, 3391 (1970).
http://dx.doi.org/10.1063/1.1674506
48.
48.H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).
http://dx.doi.org/10.1063/1.555856
49.
49.A.G. Engelhardt and A.V. Phelps, Phys. Rev. 131, 2115 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2115
50.
50.H. Ehrhardt, L. Langhans, F. Linder, and H.S. Taylor, Phys. Rev. 173, 222 (1968).
http://dx.doi.org/10.1103/PhysRev.173.222
51.
51.C. D. Bie, B. Verheyde, T. Martens, J. van Dijk, S. paulussen, and A. Bogaerts, Plasma Process. Polym. 8, 1033 (2011).
http://dx.doi.org/10.1002/ppap.201100027
52.
52.J. Choi, F. Iza, H. J. Do, J. K. Lee, and M. H. Cho, Plasma Sources Sci. T. 18, 025029 (2009).
http://dx.doi.org/10.1088/0963-0252/18/2/025029
53.
53.I. M. Bronstein and B. S. Fraiman, Vtorichnaya Elektronnaya Emissiya (Nauka, Moskva, 1969), p. 340.
54.
54.See supplementary material at http://dx.doi.org/10.1063/1.4948414 for FIG. S1 of the two-dimensional distributions of electron densities in the microplasmas at different SEEC values.[Supplementary Material]
56.
56.K. McKay, F. Iza, and M.G. Kong, Eur. Phys. J. D 60, 497 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00191-7
57.
57.O. Zatsarinny, Y. Wang, and K. Bartschat, Phys. Rev. A 89(2), 022706 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.022706
58.
58.M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd ed. (Wiley, New York, 2005), p. 82.
59.
59.M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd ed. (Wiley, New York, 2005), p. 345.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948414
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948414
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948414
2016-04-26
2016-12-03

Abstract

The effects of the gas pressure (), microcavity height (), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter = 1000 μm) driven at constant voltage loading on the drive electrode () of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When increased, the maximum electron () or ion density () distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (). The peak and were not a monotonic function of , resulting from the two conflicting effects of on and . The impact of ions on the electrode was enhanced when increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various . The effects of on the peaks and distributions of and were negligible in the range of from 1.0 to 3.0 mm. The minimum of 0.6 mm for a steady glow discharge was predicted for of 800 Pa and of 180 V. The Au vapor addition increased the peaks of and , due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948414.html;jsessionid=w7pba2M91X7mV01EwSuE5uwk.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948414&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948414&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948414'
Right1,Right2,Right3,