Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Gartner, T. Pereira, P. Armada-da-Silva, S. Amado, A. Veloso, I. Amorim, J. Ribeiro, J. Santos, R. Barcia, P. Cruz, H. Cruz, A. Luis, J. Santos, S. Geuna, and A. Mauricio, Journal of stem cells & regenerative medicine 10(1), 1426 (2014).
2.P. L. Mok, C. F. Leong, and S. K. Cheong, The Malaysian journal of pathology 35(1), 1732 (2013).
3.T. Nagamura-Inoue and H. He, World journal of stem cells 6(2), 195202 (2014).
4.Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, Dose-response : a publication of International Hormesis Society 9(4), 602618 (2011).
5.A. R. Gross, S. Dziengo, O. Boers, C. H. Goldsmith, N. Graham, L. Lilge, S. Burnie, and R. White, The open orthopaedics journal 7, 396419 (2013).
6.M. Miloro, L. E. Halkias, S. Mallery, S. Travers, and R. G. Rashid, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 93(1), 2734 (2002).
7.N. N. Houreld, P. R. Sekhejane, and H. Abrahamse, Lasers in surgery and medicine 42(6), 494502 (2010).
8.H. Abrahamse, Photomedicine and laser surgery 30(12), 681682 (2012).
9.J. A. de Villiers, N. N. Houreld, and H. Abrahamse, Stem cell reviews 7(4), 869882 (2011).
10.N. N. Houreld, R. T. Masha, and H. Abrahamse, Lasers in surgery and medicine 44(5), 429434 (2012).
11.M. Miloro and M. Repasky, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 89(1), 1218 (2000).
12.R. A. Nicolau, M. S. Martinez, J. Rigau, and J. Tomas, Lasers in surgery and medicine 35(3), 236241 (2004).
13.A. A. Yamany and H. M. Sayed, Journal of Advanced Research 3(1), 2128 (2012).
14.C. H. Chen, H. S. Hung, and S. H. Hsu, Lasers in surgery and medicine 40(1), 4654 (2008).
15.X. Gao and D. Xing, Journal of biomedical science 16, 4 (2009).
16.L. Luo, Z. Sun, L. Zhang, X. Li, Y. Dong, and T. C. Liu, Lasers in medical science 28(3), 725734 (2013).
17.Y. Y. Huang, K. Nagata, C. E. Tedford, T. McCarthy, and M. R. Hamblin, Journal of biophotonics 6(10), 829838 (2013).
18.M. Migliario, P. Pittarella, M. Fanuli, M. Rizzi, and F. Reno, Lasers in medical science 29(4), 14631467 (2014).
19.M. Koutná, R. Janisch, and R. Veselska, Scripta Medica 76(3), 163172 (2003).
20.S. V. Moskvin, D. Kliuchnikov, E. V. Antipov, S. E. Volchkov, and O. N. Kiseleva, Vopr Kurortol Fizioter Lech Fiz Kult (6), 4047 (2014).
21.S. Bouvet-Gerbettaz, E. Merigo, J. P. Rocca, G. F. Carle, and N. Rochet, Lasers in surgery and medicine 41(4), 291297 (2009).
22.P. Moore, T. D. Ridgway, R. G. Higbee, E. W. Howard, and M. D. Lucroy, Lasers in surgery and medicine 36(1), 812 (2005).
23.E. Fukuhara, T. Goto, T. Matayoshi, S. Kobayashi, and T. Takahashi, Calcified tissue international 79(6), 443450 (2006).
24.T. Kushibiki, T. Hirasawa, S. Okawa, and M. Ishihara, Photomedicine and laser surgery 31(3), 95104 (2013).
25.X. Gao, T. Chen, D. Xing, F. Wang, Y. Pei, and X. Wei, Journal of cellular physiology 206(2), 441448 (2006).
26.J. Zhang, D. Xing, and X. Gao, Journal of cellular physiology 217(2), 518528 (2008).
27.A. C. Maritim, R. A. Sanders, and J. B. Watkins 3rd, Journal of biochemical and molecular toxicology 17(1), 2438 (2003).
28.Y. Y. Huang, A. C. Chen, J. D. Carroll, and M. R. Hamblin, Dose-response : a publication of International Hormesis Society 7(4), 358383 (2009).
29.M. A. Takhtfooladi, M. Shahzamani, H. A. Takhtfooladi, F. Moayer, and A. Allahverdi, Lasers in medical science (2014).
30.A. C. Chen, P. R. Arany, Y. Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal, T. Saleem, D. Mooney, F. E. Yull, T. S. Blackwell, and M. R. Hamblin, PloS one 6(7), e22453 (2011).
31.T. Wang, X. Zhang, and J. J. Li, International immunopharmacology 2(11), 15091520 (2002).
32.J. Y. Wu, C. H. Chen, C. Z. Wang, M. L. Ho, M. L. Yeh, and Y. H. Wang, PloS one 8(1), e54067 (2013).
33.P. Kassak, T. Przygodzki, D. Habodaszova, M. Bryszewska, and L. Sikurova, General physiology and biophysics 24(2), 209220 (2005).
34.C. C. Yang, J. Wang, S. C. Chen, and Y. L. Hsieh, Journal of tissue engineering and regenerative medicine (2013).
35.T. Fushimi, S. Inui, T. Nakajima, M. Ogasawara, K. Hosokawa, and S. Itami, Wound Repair Regen 20(2), 226235 (2012).
36.A. P. de Sousa, J. N. Santos, J. A. Dos Reis, Jr., T. A. Ramos, J. de Souza, M. C. Cangussu, and A. L. Pinheiro, Photomedicine and laser surgery 28(4), 547552 (2010).
37.W. K. Ong, H. F. Chen, C. T. Tsai, Y. J. Fu, Y. S. Wong, D. J. Yen, T. H. Chang, H. D. Huang, O. K. Lee, S. Chien, and J. H. Ho, Biomaterials 34(8), 19111920 (2013).
38.F. Ginani, D. M. Soares, M. P. Barreto, and C. A. Barboza, Lasers in medical science 30(8), 21892194 (2015).

Data & Media loading...


Article metrics loading...



Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd