Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948446
1.
1.S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Nature Photon. 3, 180 (2009).
http://dx.doi.org/10.1038/nphoton.2009.32
2.
2.U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, Proc. IEEE 96, 287 (2008).
http://dx.doi.org/10.1109/JPROC.2007.911060
3.
3.S. Yamaguchi, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 82, 2065 (2003).
http://dx.doi.org/10.1063/1.1560560
4.
4.S. Yamaguchi, R. Izaki, N. Kaiwa, S. Sugimura, and A. Yamamoto, Appl. Phys. Lett. 84, 5344 (2004).
http://dx.doi.org/10.1063/1.1766400
5.
5.M. S. Brandt, P. Herbst, H. Angerer, O. Ambacher, and M. Stutzmann, Phys. Rev. B 58, 7786 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7786
6.
6.A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J. E. Bowers, S. P. DenBaars, and S. Nakamura, Appl. Phys. Exp. 2, 111003 (2009).
http://dx.doi.org/10.1143/APEX.2.111003
7.
7.W. L. Liu and A. A. Balandin, J. Appl. Phys. 97, 073710 (2005).
http://dx.doi.org/10.1063/1.1868876
8.
8.S. Yamaguchi, R. Izaki, N. Kaiwa, and A. Yamamoto, Appl. Phys. Lett. 86, 252102 (2005).
http://dx.doi.org/10.1063/1.1951048
9.
9.R. Izaki, N. Kaiwa, M. Hoshino, T. Yaginuma, S. Yamaguchi, and A. Yamamoto, Appl. Phys. Lett. 87, 243508 (2005).
http://dx.doi.org/10.1063/1.2143110
10.
10.A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Appl. Phys. Lett. 98, 012108 (2011).
http://dx.doi.org/10.1063/1.3536507
11.
11.B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Appl. Phys. Lett. 92, 042112 (2008).
http://dx.doi.org/10.1063/1.2839309
12.
12.B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Liang, and G. Pomrenke, J. Electron Mater. 38, 1132 (2009).
http://dx.doi.org/10.1007/s11664-009-0676-8
13.
13.A. Sztein, H. Ohta, J. E. Bowers, S. P. DenBaars, and S. Nakamura, J. Appl. Phys. 110, 123709 (2011).
http://dx.doi.org/10.1063/1.3670966
14.
14.H. Tong, J. Zhang, G. Liu, J. A. Herbsommer, G. S. Huang, and N. Tansu, Appl. Phys. Lett. 97, 112105 (2010).
http://dx.doi.org/10.1063/1.3489086
15.
15.J. Zhang, H. Tong, G. Liu, J. A. Herbsommer, G. S. Huang, and N. Tansu, J. Appl. Phys. 109, 053706 (2011).
http://dx.doi.org/10.1063/1.3553880
16.
16.A. Sztein, J. E. Bowers, S. P. DenBaars, and S. Nakamura, J. Appl. Phys. 112, 083716 (2012).
http://dx.doi.org/10.1063/1.4759287
17.
17.J. Piprek, Semiconductor Optoelectronic Devices (Academic, San Diego, 2003).
18.
18.W. Nakwaski, J. Appl. Phys. 64, 159 (1988).
http://dx.doi.org/10.1063/1.341449
19.
19.J.-H. Bahk, Z. Bian, M. Zebarjadi, J. M. O. Zide, H. Lu, D. Xu, J. P. Feser, G. Zeng, A. Majumdar, A. C. Gossard, A. Shakouri, and J. E. Bowers, Phys. Rev. B 81, 235209 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235209
20.
20.A. Bejan and A. D. Allan, Heat Transfer Handbook (Wiley, New York, 2003).
21.
21.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
22.
22.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
23.
23.T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000).
http://dx.doi.org/10.1063/1.1308271
24.
24.G. Zeng, J. M. O. Zide, W. Kim, J. E. Bowers, A. C. Gossard, Z. Bian, Y. Zhang, A. Shakouri, S. L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007).
http://dx.doi.org/10.1063/1.2433751
25.
25.Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, Adv. Funct. Mater. 19, 610 (2009).
http://dx.doi.org/10.1002/adfm.200800984
26.
26.A. Sztein, J. E. Bowers, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 104, 042106 (2014).
http://dx.doi.org/10.1063/1.4863420
27.
27.G. Koblmüller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, and M. Wraback, Appl. Phys. Lett. 89, 071902 (2006).
http://dx.doi.org/10.1063/1.2335685
28.
28.B. Loitsch, F. Schuster, M. Stutzmann, and G. Koblmüller, Appl. Phys. Lett. 102, 051916 (2013).
http://dx.doi.org/10.1063/1.4789983
29.
29.M. Himmerlich, A. Knübel, R. Aidam, L. Kirste, A. Eisenhardt, S. Krischok, J. Pezoldt, P. Schley, R. Goldhahn, and G. Koblmüller, J. Appl. Phys. 113, 033501 (2013).
http://dx.doi.org/10.1063/1.4775736
30.
30.N. Miller, J. W. Ager III, H. M. Smith III, M. A. Mayer, K. M. Yu, E. E. Haller, W. Walukiewicz, W. J. Schaff, C. S. Gallinat, G. Koblmüller, and J. S. Speck, J. Appl. Phys. 107, 113712 (2010).
http://dx.doi.org/10.1063/1.3427564
31.
31.N. Miller, E. E. Haller, G. Koblmüller, C. S. Gallinar, J. S. Speck, W. J. Schaff, M. E. Hawkridge, K. M. Yu, and J. W. Ager III, Phys. Rev. B 84, 075315 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075315
32.
32.J. Ju, B. Loitsch, T. Stettner, F. Schuster, M. Stutzmann, and G. Koblmüller, J. Appl. Phys. 116, 053501 (2014).
http://dx.doi.org/10.1063/1.4891990
33.
33.G. D. Chern-Metcalfe, E. D. Readinger, H. Shen, M. Wraback, G. Koblmüller, C. S. Gallinat, and J. S. Speck, Phys. Stat. Sol. (c) 5, 1846 (2008).
http://dx.doi.org/10.1002/pssc.200778696
34.
34.D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
35.
35.K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, Rev. Sci. Instrum. 79, 114901 (2008).
http://dx.doi.org/10.1063/1.3020759
36.
36.D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).
http://dx.doi.org/10.1063/1.1819431
37.
37.Y. K. Koh and D. G. Cahill, Phys. Rev. B 76, 075207 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075207
38.
38.G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
39.
39.C. S. Gallinat, G. Koblmüller, and J. S. Speck, Appl. Phys. Lett. 95, 022103 (2009).
http://dx.doi.org/10.1063/1.3173202
40.
40.X. Wang, S. Liu, N. Ma, L. Feng, G. Chen, F. Xu, N. Tang, S. Huang, K. J. Chen, S. Zhou, and B. Shen, Appl. Phys. Exp. 5, 015502 (2012).
http://dx.doi.org/10.1143/APEX.5.015502
41.
41.S. V. Ivanov, T. V. Shubina, T. A. Komissarova, and V. N. Jmerik, J. Cryst. Growth 403, 83 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.06.019
42.
42.V. Rawat, Y. K. Koh, D. G. Cahill, and T. D. Sands, J. Appl. Phys. 105, 024909 (2009).
http://dx.doi.org/10.1063/1.3065092
43.
43.S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, IEEE Trans. Electron Dev. 54, 2137 (2007).
http://dx.doi.org/10.1109/TED.2007.902871
44.
44.C. S. Gallinat, G. Koblmüller, F. Wu, and J. S. Speck, J. Appl. Phys. 107, 053517 (2010).
http://dx.doi.org/10.1063/1.3319557
45.
45.W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, Phys. Rev. B 59, 8105 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8105
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948446
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948446
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948446
2016-04-28
2016-12-09

Abstract

The thermoelectricproperties of n-type InGaN alloys with high In-content and InN/InGaN thin film superlattices(SL) grown by molecular beam epitaxy are investigated. Room-temperature measurements of the thermoelectricproperties reveal that an increasing Ga-content in ternary InGaN alloys (0 < (Ga) < 0.2) yields a more than 10-fold reduction in thermal conductivity () without deteriorating electrical conductivity (), while the Seebeck coefficient () increases slightly due to a widening band gap compared to binary InN. Employing InN/InGaN SLs ((Ga) = 0.1) with different periods, we demonstrate that confinement effects strongly enhance electron mobility with values as high as ∼820 cm2/V s at an electron density of ∼5×1019 cm−3, leading to an exceptionally high of ∼5400 (Ωcm)−1. Simultaneously, in very short-period SL structures becomes decoupled from , is further reduced below the alloy limit ( < 9 W/m-K), and the power factor increases to 2.5×10−4 W/m-K2 by more than a factor of 5 as compared to In-rich InGaN alloys. These findings demonstrate that quantum confinement in group-III nitride-based superlattices facilitates improvements of thermoelectricproperties over bulk-like ternary nitride alloys.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948446.html;jsessionid=ZFUI56HuaS0DYVz6S7TZO1Km.x-aip-live-06?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948446&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948446&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948446'
Right1,Right2,Right3,