Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Chowdhury, Phys. Status Solidi A 212, 1066 (2015).
2.K. A. Jones, T. P. Chow, M. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, and G. S. Tompa, J. Mater. Sci. 50, 3267 (2015).
3.S. Arulkumaran, T. Egawa, S. Matsui, and H. Ishikawa, Appl. Phys. Lett. 86, 123503 (2005).
4.A. Dadgar, Phys. Status Solidi B 252, 1063 (2015).
5.F. Semond, Mater. Res. Soc. 40, 412 (2015).
6.S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015).
7.J. J. Freedsman, T. Egawa, Y. Yamaoka, Y. Yano, A. Ubukata, T. Tabuchi, and K. Matsumoto, Appl. Phys. Express 7, 041003 (2014).
8.D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, Appl. Phys. Express 6, 026501 (2013).
9.H. Ishikawa, G. -Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, Jpn. J. Appl. Phys. 38, L492 (1999).
10.T. Egawa, IEDM Tech. Dig. 613 (2012).
11.S. Demirtas, J. Joh, and J. A. del Alamo, Microelectron. Reliab. 50, 758 (2010).
12.A. F. Wilson, A. Wakejima, and T. Egawa, Appl. Phys. Express 6, 116601 (2013).
13.D. Marcon, T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivastava, K. Cheng, M. Leys, R. Mertens, S. Decoutere, G. Meneghesso, E. Zanoni, and G. Borghs, IEDM Tech. Dig. 472 (2010).
14. Klein, J. Biskupek, U. Kaiser, K. Forghani, S. B. Thapa, and F. Scholz, J. Phys. Conf. Ser. 209, 012018 (2010).
15.O. Klein, J. Biskupek, K. Forghani, F. Scholz, and U. Kaiser, J. Cryst. Growth 324, 63 (2011).
16.D. M. Follstaedt, S. R. Lee, A. A. Allerman, and J. A. Floro, J. Appl. Phys. 105, 083507 (2009).
17.H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, J. Appl. Phys. 89, 7846 (2001).
18.C. D. Lee, A. Sagar, R. M. Feenstra, C. K. Inoki, T. S. Kuan, W. L. Sarney, and L. Salamanca-Riba, Appl. Phys. Lett. 79, 3428 (2001).
19.M. Agrawal, N. Dharmarasu, K. Radhakrishnan, and L. Ravikiran, Thin Solid Films 520, 7109 (2012).
20.M. Tanaka, M. Terauchi, and T. Kaneyama, J. Electron Microsc. 40, 211 (1991).
21.M. Tanaka, M. Terauchi, and T. Kaneyama, Convergent-Beam Electron Diffraction II (JEOL-Maruzen, Tokyo, 1988), p. 160.
22.D. Cherns and J. P. Morniroli, Ultramicroscopy 53, 167 (1994).
23.Y. Sugawara, M. Nakamori, Y. Yao, Y. Ishikawa, K. Danno, H. Suzuki, T. Bessho, S. Yamaguchi, K. Nishikawa, and Y. Ikuhara, Appl. Phys. Express 5, 081301 (2012).
24.S. Onda, H. Watanabe, Y. Kito, H. Kondo, H. Uehigashi, N. Hosokawa, Y. Hisada, K. Shiraishi, and H. Saka, Philos. Mag. Lett. 93, 439 (2013).
25.S. L. Selvaraj, T. Suzue, and T. Egawa, IEEE Electron Device Lett. 30, 587 (2009).
26.T. Ohnishi, H. Koike, T. Ishitani, S. Tomimatsu, K. Umemura, and T. Kamino, in Proc. 25th Int. Symp. for Testing and Failure Analysis (1999), p. 449.
27.H. Sasaki, T. Matsuda, T. Kato, T. Muroga, Y. Iijima, T. Saitoh, F. Iwase, Y. Yamada, T. Izumi, Y. Shiohara, and T. Hirayama, J. Electron Microsc. 53, 497 (2004).
28.M. Tanaka, M. Terauchi, and K. Tsuda, Convergent-Beam Electron Diffraction III (JEOL-Maruzen, Tokyo, 1994), p. 178.
29.O. Ambacher, F. Freudenberg, R. Dimitrov, H. Angerer, and M. Stutzmann, Jpn. J. Appl. Phys. 37, 2416 (1998).
30.F. Wu, H. Wang, S. Byrappa, B. Raghothamachar, M. Dudley, E. K. Sanchez, D. Hansen, R. Drachev, S. G. Mueller, and M. J. Loboda, Maert. Sci. Forum 717-720, 343 (2012).
31.F. Wu, M. Dudley, H. Wang, S. Byrappa, S. Sun, B. Raghothamachar, E. K. Sanchez, G. Chung, D. Hansen, S. G. Mueller, and M. J. Loboda, Mater. Sci. Forum 740-742, 217 (2013).

Data & Media loading...


Article metrics loading...



The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (=1/3[-211-3]) and anothor dislocation ( =1/3[-2113]) to form one dislocation ( =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd