Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
2.G. C. Yi, C. Wang, and W. I. Park, Semicond. Sci. Technol. 20, S22 (2005).
3.M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Nature Mater. 9, 120 (2010).
4.J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, Adv. Mater. 19, 781 (2007).
5.K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
6.B. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, J. Phys. Chem. B 110, 12865 (2006).
7.T. Hanada, Basic Properties of ZnO, GaN, and Related Materials (Springer, 2009), p. 1.
8.C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007).
9.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
10.C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, Nat. Photonics 7, 752 (2013).
11.X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, Adv. Mater. 21, 2767 (2009).
12.H. Yan, R. He, J. Pham, and P. Yang, Adv. Mater. 15, 402 (2003).
13.Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phys. Lett. 83, 144 (2003).
14.S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 84, 3241 (2004).
15.D. M. Kim, Y. H. Cho, H. Jeong, H. Y. Baek, G. C. Yi, and Y. D. Jho, J. Nanosci. Nanotech. 14, 5293 (2014).
16.J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, Adv. Mater. 16, 1661 (2004).
17.S. N. Das, J. P. Kar, J. H Choi, S. Byeon, Y. D. Jho, and J. M. Myoung, Appl. Phys, Lett. 95, 111909 (2009).
18.I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004).
19.A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 90, 123 (2000).
20.J. B. Baxter and E. S. Aydil, J. Cryst. Growth 274, 407 (2005).
21.R. A. Rosenberg, M. A. Haija, K. Vijayalakshmi, J. Zhou, S. Xu, and Z. L. Wang, Appl. Phys. Lett. 95, 243101 (2009).
22.S. H. Park, T. Hanada, D. C. Oh, T. Minegishi, H. Goto, G. Fujimoto, J. S. Park, I. H Im, J. H. Chang, M. W. Cho, T. Yao, and K. Inaba, Appl. Phys. Lett. 91, 231904 (2007).
23.S. I. Park, T. S. Cho, S. J. Doh, J. L. Lee, and J. H. Je, Appl. Phys. Lett. 77, 349 (2000).
24.I. S. Jeong, J. H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).
25.M. R. Wagner, G. Callsen, J. S. Reparaz, J. H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84, 035313 (2011).
26.T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Phys. Rev. B 65, 121201 (2002).
27.S. Shokhovets, O. Ambacher, B. K. Meyer, and G. Gobsch, Phys. Rev. B 78, 035207 (2008).
28.M. Latzel, M. Göbelt, G. Broönstrup, C. Venzago, S. W. Schmitt, G. Sarau, and S. H. Christiansen, Opt. Mater. Express 5, 1979 (2015).
29.A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, Phys. Rev. Lett. 107, 236405 (2011).
30.Z. Yang, D. C. Look, and J. L. Liu, Appl. Phys. Lett. 94, 072101 (2009).
31.S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, J. Appl. Phys. 93, 756 (2003).
32.S. Xu, W. Guo, S. Du, M. M. T. Loy, and N. Wang, Nano Lett. 12, 5802 (2012).
33.T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 79, 1282 (2001).
34.J. Wrzesinski and D. Fröhlich, Phys. Rev. B 56, 13087 (1997).
35.W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
36.M. K. Patra, M. Manoth, V. K. Singh, G. S. Gowd, V. S. Choudhry, S. R. Vadera, and N. Kumar, J. Lumin. 129, 320 (2009).
37.Y. Gu, L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Appl. Phys. Lett. 85, 3833 (2004).
38.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
39.S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G. C. Yi, Appl. Phys. Lett. 83, 4157 (2003).
40.D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris, and M. J. Callahan, J. Appl. Phys. 88, 2152 (2000).
41.C. Hauswald, P. Corfdir, J. K. Zettler, V. M. Kaganer, K. K. Sabelfeld, S. Fernández-Garrido, T. Flissikowski, V. Consonni, T. Gotschke, H. T. Grahn, L. Geelhaar, and O. Brandt, Phys. Rev. B 90, 165304 (2014).
42.C. Hauswald, T. Flissikowski, T. Gotschke, R. Calarco, L. Geelhaar, H. T. Grahn, and O. Brandt, Phys. Rev. B 88, 075312 (2013).
43.A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
44.L.J. Brillson, H.L. Mosbacker, D.L. Doutt, Y. Dong, Z.-Q. Fang, D.C. Look, G. Cantwell, J. Zhang, and J.J. Song, Superlattices Microstruct. 45, 206 (2009).

Data & Media loading...


Article metrics loading...



In order to locate the spatially resolved influence of the strain, carrier localization, and quantum size effect (QSE) in tapered ZnO nanoneedles (NNs), the photoluminescence(PL) was measured as a function of the incident laser angle from 0 (normal to a surface) to 85. With increasing , the excitation point is spatially restricted along the axis of the NNs and varies from the ZnO buffer/sapphire interface to the tips of the NNs. In this way, we identified a strain-induced blue-shift of 25.3 meV at the ZnO buffer/sapphire interface, which corresponds to a tensile strain of 0.319%. The influence of strain and the concomitant indications of carrier localization decreased as the excitation point moved to a higher location along the NNs with increasing whereas the QSE revealed an abrupt blue-shift near the tips of the NNs. Furthermore, time-resolved PLmeasurement as a function of the excitation angle was used to distinguish the strain effect from the QSE. We observed two spatially competing tendencies: (1) the decay times are influenced by the increase in the interfacial strain and (2) the decay times are influenced by the decrease in the diameter-dependent QSE near the tips of the tapered ZnO NNs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd