Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948452
1.
1.Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
2.
2.G. C. Yi, C. Wang, and W. I. Park, Semicond. Sci. Technol. 20, S22 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/003
3.
3.M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Nature Mater. 9, 120 (2010).
http://dx.doi.org/10.1038/nmat2607
4.
4.J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, Adv. Mater. 19, 781 (2007).
http://dx.doi.org/10.1002/adma.200601908
5.
5.K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.05.027
6.
6.B. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, J. Phys. Chem. B 110, 12865 (2006).
http://dx.doi.org/10.1021/jp061357d
7.
7.T. Hanada, Basic Properties of ZnO, GaN, and Related Materials (Springer, 2009), p. 1.
8.
8.C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007).
9.
9.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
http://dx.doi.org/10.1063/1.369577
10.
10.C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, Nat. Photonics 7, 752 (2013).
http://dx.doi.org/10.1038/nphoton.2013.191
11.
11.X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, Adv. Mater. 21, 2767 (2009).
http://dx.doi.org/10.1002/adma.200802686
12.
12.H. Yan, R. He, J. Pham, and P. Yang, Adv. Mater. 15, 402 (2003).
http://dx.doi.org/10.1002/adma.200390091
13.
13.Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phys. Lett. 83, 144 (2003).
http://dx.doi.org/10.1063/1.1589166
14.
14.S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 84, 3241 (2004).
http://dx.doi.org/10.1063/1.1734681
15.
15.D. M. Kim, Y. H. Cho, H. Jeong, H. Y. Baek, G. C. Yi, and Y. D. Jho, J. Nanosci. Nanotech. 14, 5293 (2014).
http://dx.doi.org/10.1166/jnn.2014.8303
16.
16.J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, Adv. Mater. 16, 1661 (2004).
http://dx.doi.org/10.1002/adma.200306673
17.
17.S. N. Das, J. P. Kar, J. H Choi, S. Byeon, Y. D. Jho, and J. M. Myoung, Appl. Phys, Lett. 95, 111909 (2009).
http://dx.doi.org/10.1063/1.3231615
18.
18.I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245401
19.
19.A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 90, 123 (2000).
http://dx.doi.org/10.1016/S0022-2313(99)00599-2
20.
20.J. B. Baxter and E. S. Aydil, J. Cryst. Growth 274, 407 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.10.014
21.
21.R. A. Rosenberg, M. A. Haija, K. Vijayalakshmi, J. Zhou, S. Xu, and Z. L. Wang, Appl. Phys. Lett. 95, 243101 (2009).
http://dx.doi.org/10.1063/1.3275000
22.
22.S. H. Park, T. Hanada, D. C. Oh, T. Minegishi, H. Goto, G. Fujimoto, J. S. Park, I. H Im, J. H. Chang, M. W. Cho, T. Yao, and K. Inaba, Appl. Phys. Lett. 91, 231904 (2007).
http://dx.doi.org/10.1063/1.2813021
23.
23.S. I. Park, T. S. Cho, S. J. Doh, J. L. Lee, and J. H. Je, Appl. Phys. Lett. 77, 349 (2000).
http://dx.doi.org/10.1063/1.126972
24.
24.I. S. Jeong, J. H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).
http://dx.doi.org/10.1063/1.1616663
25.
25.M. R. Wagner, G. Callsen, J. S. Reparaz, J. H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84, 035313 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035313
26.
26.T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Phys. Rev. B 65, 121201 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.121201
27.
27.S. Shokhovets, O. Ambacher, B. K. Meyer, and G. Gobsch, Phys. Rev. B 78, 035207 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035207
28.
28.M. Latzel, M. Göbelt, G. Broönstrup, C. Venzago, S. W. Schmitt, G. Sarau, and S. H. Christiansen, Opt. Mater. Express 5, 1979 (2015).
http://dx.doi.org/10.1364/OME.5.001979
29.
29.A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt, Phys. Rev. Lett. 107, 236405 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.236405
30.
30.Z. Yang, D. C. Look, and J. L. Liu, Appl. Phys. Lett. 94, 072101 (2009).
http://dx.doi.org/10.1063/1.3080204
31.
31.S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, J. Appl. Phys. 93, 756 (2003).
http://dx.doi.org/10.1063/1.1527707
32.
32.S. Xu, W. Guo, S. Du, M. M. T. Loy, and N. Wang, Nano Lett. 12, 5802 (2012).
http://dx.doi.org/10.1021/nl303132c
33.
33.T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 79, 1282 (2001).
http://dx.doi.org/10.1063/1.1398328
34.
34.J. Wrzesinski and D. Fröhlich, Phys. Rev. B 56, 13087 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13087
35.
35.W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.59
36.
36.M. K. Patra, M. Manoth, V. K. Singh, G. S. Gowd, V. S. Choudhry, S. R. Vadera, and N. Kumar, J. Lumin. 129, 320 (2009).
http://dx.doi.org/10.1016/j.jlumin.2008.10.014
37.
37.Y. Gu, L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Appl. Phys. Lett. 85, 3833 (2004).
http://dx.doi.org/10.1063/1.1811797
38.
38.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
http://dx.doi.org/10.1016/j.pmatsci.2004.04.001
39.
39.S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G. C. Yi, Appl. Phys. Lett. 83, 4157 (2003).
http://dx.doi.org/10.1063/1.1627472
40.
40.D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris, and M. J. Callahan, J. Appl. Phys. 88, 2152 (2000).
http://dx.doi.org/10.1063/1.1305546
41.
41.C. Hauswald, P. Corfdir, J. K. Zettler, V. M. Kaganer, K. K. Sabelfeld, S. Fernández-Garrido, T. Flissikowski, V. Consonni, T. Gotschke, H. T. Grahn, L. Geelhaar, and O. Brandt, Phys. Rev. B 90, 165304 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.165304
42.
42.C. Hauswald, T. Flissikowski, T. Gotschke, R. Calarco, L. Geelhaar, H. T. Grahn, and O. Brandt, Phys. Rev. B 88, 075312 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075312
43.
43.A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
44.
44.L.J. Brillson, H.L. Mosbacker, D.L. Doutt, Y. Dong, Z.-Q. Fang, D.C. Look, G. Cantwell, J. Zhang, and J.J. Song, Superlattices Microstruct. 45, 206 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.11.008
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948452
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948452
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948452
2016-04-27
2016-12-08

Abstract

In order to locate the spatially resolved influence of the strain, carrier localization, and quantum size effect (QSE) in tapered ZnO nanoneedles (NNs), the photoluminescence(PL) was measured as a function of the incident laser angle from 0 (normal to a surface) to 85. With increasing , the excitation point is spatially restricted along the axis of the NNs and varies from the ZnO buffer/sapphire interface to the tips of the NNs. In this way, we identified a strain-induced blue-shift of 25.3 meV at the ZnO buffer/sapphire interface, which corresponds to a tensile strain of 0.319%. The influence of strain and the concomitant indications of carrier localization decreased as the excitation point moved to a higher location along the NNs with increasing whereas the QSE revealed an abrupt blue-shift near the tips of the NNs. Furthermore, time-resolved PLmeasurement as a function of the excitation angle was used to distinguish the strain effect from the QSE. We observed two spatially competing tendencies: (1) the decay times are influenced by the increase in the interfacial strain and (2) the decay times are influenced by the decrease in the diameter-dependent QSE near the tips of the tapered ZnO NNs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948452.html;jsessionid=3_43LNvpimC6h9oa7H47a-Ta.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948452&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948452&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948452'
Right1,Right2,Right3,