Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. L. Rogach, A. Kornowski, M. Gao et al., J. Phys. Chem. B 103, 3065 (1999).
2.Y. L. Soo, Z. H. Ming, S. W. Huang, Y. H. Kao, R. N. Bhargava, and D. Gallagher, Phys. Rev. B 50, 7602 (1994).
3.A. P. Alivisatos, Science 271, 933 (1996).
4.R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).
5.N. Karar, F. Singh, and B. R. Mehta, J Appl. Phys. 95, 656 (2004).
6.L. Wang, X. Xu, and X. Yuan, Journal of Luminescence 130, 137 (2010).
7.S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, and J. Tang, Phys. Rev. Applied 3, 024011 (2015).
8.H. Yang, S. Santra, and P. Holloway, Journal of Nanoscience and Nanotechnology 5, 1364 (2005).
9.W. Chen, J. O. Malm, V. Zwiller, R. Wallenberg, and J. O. Bovin, Journal of Applied Physics 89, 2671 (2001).
10.W.Q. Peng, S.C. Qu, G.W. Cong, and Z.G. Wong, J. Cryst. Growth 282, 179 (2005).
11.I. Yu, T. Isobe, and M. Senna, J. Phys. Chem. Solids 57, 373 (1996).
12.K. Jayanthi, S. Chawla, H. Chander, and Haranath D. Haranath, Cryst. Res. Technol. 42, 976 (2007).
13.W. Chen, J.O. Malm, V. Zwiller, Y. Huang, S. Liu, R. Wallenberg, J.O. Bovin, and L. Samuelson, Phys. Rev. B 61, 11021 (2000).
14.L. S. Man, G. H. Qing, Z.Z. Hua, L.F. Qi1, and W. Z. Guo, Chinese Physics Letters 17, 609 (2000).
15.S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y.D. Park, F. Ren, J. Kim, and L. A. Boatner, Journal of Applied Physics 93, 1 (2003).
16.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molna, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
17.Y. Geng, L.D. Zhang, G.Z. Wang, T. Xie, Y.G. Zhang, and G.W. Meng, Appl. Phys. Lett. 84, 2157 (2004).
18.S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I. Y. Park, and Y.D. Choi, Materials Letters 58, 342 (2004).
19.S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, and G.Q. Xu, Applied physics letters 73, 478 (1998).
20.G. Ren, Z. Lin, C. Wang, W. Liu1, J. Zhang, F. Huang, and J. Liang, Nanotechnology 18, 035705 (2007).
21.S. Sambasivam, D.P. Joseph, J.G. Lin, and C. Venkateswaran, Journal of Solid State Chemistry 182, 2598 (2009).
22.P. Vinotha Boorana Lakshmi, K. Sakthi Raj, and K. Ramachandran, Cryst. Res. Tech. 44, 153 (2009).
23.M Ragam, G Kalaiselvan, S Arumugam, N Sankar, and K Ramachandran, Journal of Alloys and Compounds 541, 222 (2012).
24.T. Kang, J. Sung, W. Shim, H. Moon, J. Cho, Y. Jo, W. Lee, and B. Kim, J. Phys. Chem. C 113, 5352 (2009).
25.S. Kumar, S. Kumar, and N. K. Verma, Journal of Materials Science: Materials in Electronics 22, 523 (2011).
26.B Bhattacharjee, D. Ganguli, K. Iakoubovskii, A. Stesmans, and S. Chaudhuri, Bulletin of Materials Science 25, 175 (2002).
27.Y. Li, C. Cao, and Z. Chen, Chem. Phys. Lett. 517, 55 (2011).
28.S. Horoz, L. Liu, Q. Dai, B. Yakami, J.M. Pikal, W. Wang, and J. Tang, Appl. Phys. Lett. 101, 223902 (2012).
29.R Kripal, A.K. Gupta, S.K. Mishta, K. Srivastava, A. C. Pandey, and S.G. Prakash, Spectrochimica Acta Part A. 76, 523 (2010).
30.D. D. Papakonstantinou, J. Huang, and P. Lianos, Journal of Materials Science Letters 17, 1571 (1998).
31.S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, Appl. Phys. Lett. 80, 3605 (2002).
32.J. Chen, L. Lu, and W. Wang, J. Phys. Chem. C 116, 10841 (2012).
33.H. Yang, L. Yua, L. Shen, and L. Wang, Materials Letters 58, 1172 (2004).
34.K. Swiatek, M. Godlewski, D. Hommel, and H. Hartman, Phys. Rev. B 42, 3628 (1990).
35.D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, and B. Sreedhar, Cryst. Res. Technol 46, 731 (2011).
36.W. Z. Xiao, L. L. Wang, Q. Y. Rong, G. Xiao, and B. Meng, Journal of Applied Physics 115, 213905 (2014).
37.Z. Zhang, U. Schwingenschlogl, and I.S. Roqan, RSC Adv. 4, 50759 (2014).
38.G. Zhu, S. Zhang, Z. Xu, J. Ma, and X. Shen, J. Am. Chem. Soc. 133, 15605 (2011).
39.A. Zunger and S. Lany, Physics 3, 53 (2010).

Data & Media loading...


Article metrics loading...



Eu-doped ZnSquantum dots(QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu2+ and Eu3+dopedZnS can be controllably synthesized. The Eu2+dopedZnSQDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f6d1 – 4f7, while the Eu3+doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu3+doped samples exhibit signs of ferromagnetism, on the other hand, Eu2+doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QDsolar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnSQDs in solar cell technology.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd