Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948528
1.
1.J. W. Christian and S. Mahajan, Progress in Materials Science 39, 1-157 (1995).
http://dx.doi.org/10.1016/0079-6425(94)00007-7
2.
2.M. A. Meyers, A. Mishra, and D. J. Benson, Progress in materials science 51, 427-556 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2005.08.003
3.
3.Y. T. Zhu, X. Liao, and X. Wu, Progress in Materials Science 57, 1-62 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2011.05.001
4.
4.Y. Wang, A. Hodge, J. Biener, A. Hamza, D. Barnes, K. Liu, and T. Nieh, Applied Physics Letters 86, 101915 (2005).
http://dx.doi.org/10.1063/1.1883335
5.
5.L. Hsiung and D. Lassila, Acta materialia 48, 4851-4865 (2000).
http://dx.doi.org/10.1016/S1359-6454(00)00287-1
6.
6.L. Murr, M. Meyers, C. S. Niou, Y. Chen, S. Pappu, and C. Kennedy, Acta materialia 45, 157-175 (1997).
http://dx.doi.org/10.1016/S1359-6454(96)00145-0
7.
7.J. Shields, S. Goods, R. Gibala, and T. Mitchell, Materials Science and Engineering 20, 71-81 (1975).
http://dx.doi.org/10.1016/0025-5416(75)90132-9
8.
8.R. Koo, Journal of the Less Common Metals 4, 138-144 (1962).
http://dx.doi.org/10.1016/0022-5088(62)90012-7
9.
9.J. N. Florando, N. R. Barton, B. S. El-Dasher, J. M. McNaney, and M. Kumar, Journal of Applied Physics 113, 083522 (2013).
http://dx.doi.org/10.1063/1.4792227
10.
10.S. Mahajan and A. Bartlett, Acta Metallurgica 19, 1111-1119 (1971).
http://dx.doi.org/10.1016/0001-6160(71)90043-5
11.
11.S. Mahajan, Physica Status Solidi (b) 33, 291-299 (1969).
http://dx.doi.org/10.1002/pssb.19690330127
12.
12.N. Boucher and J. Christian, Acta Metallurgica 20, 581-591 (1972).
http://dx.doi.org/10.1016/0001-6160(72)90013-2
13.
13.S. Mahajan, Physica Status Solidi (a) 2, 187-201 (1970).
http://dx.doi.org/10.1002/pssa.19700020202
14.
14.B. Hammel, D. C. Swift, B. El-Dasher, M. Kumar, G. Collins, and J. N. Florando, AIP Conference Proceedings 1426, 931-934 (2011).
15.
15.D. C. Swift, T. E. Tierney IV, R. A. Kopp, and J. T. Gammel, Physical Review E 69, 036406 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036406
16.
16.S. R. Chen and G. T. Gray, Metallurgical and Materials Transactions A 27, 2994-3006 (1996).
http://dx.doi.org/10.1007/BF02663849
17.
17.E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, Metallurgical and Materials Transactions A 30, 1223-1233 (1999).
http://dx.doi.org/10.1007/s11661-999-0272-9
18.
18.K. Wongwiwat and L. Murr, Materials Science and Engineering 35, 273-285 (1978).
http://dx.doi.org/10.1016/0025-5416(78)90129-5
19.
19.S. Mahajan, Physica Status Solidi (a) 2, 217-223 (1970).
http://dx.doi.org/10.1002/pssa.19700020205
20.
20.A. Churchman and A. Cottrell, Nature 167, 943-945 (1951).
http://dx.doi.org/10.1038/167943b0
21.
21.C.-H. Lu, B. Remington, B. Maddox, B. Kad, H.-S. Park, M. Kawasaki, T. Langdon, and M. Meyers, Acta Materialia 61, 7767-7780 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.09.016
22.
22.C. Chen, G. Hu, J. Florando, M. Kumar, K. Hemker, and K. Ramesh, Scripta Materialia 69, 709-712 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2013.07.010
23.
23.J. Asay, T. Ao, T. Vogler, J. P. Davis, and G. Gray, Journal of Applied Physics 106, 073515-073515-20 (2009).
http://dx.doi.org/10.1063/1.3226882
24.
24.J. C. F. Millett, G. Whiteman, N. T. Park, S. Case, and N. K. Bourne, Journal of Applied Physics 113, 233502 (2013).
http://dx.doi.org/10.1063/1.4810896
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948528
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948528
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948528
2016-04-28
2016-12-03

Abstract

The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10−4/s to 103/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948528.html;jsessionid=lyia2nf9AYNsPeDg9vamy2rS.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948528&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948528&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948528'
Right1,Right2,Right3,