Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948537
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.A. K. Geim and K. S. Novoselov, Nature materials 6(3), 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat Nano 7(11), 699712 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
4.
4.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat Nano 9(5), 372377 (2014).
http://dx.doi.org/10.1038/nnano.2014.35
5.
5.C. Kamal and M. Ezawa, Physical Review B 91(8), 085423 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.085423
6.
6.O. Ü. Aktürk, V. O. Özçelik, and S. Ciraci, Physical Review B 91(23), (2015).
http://dx.doi.org/10.1103/PhysRevB.91.235446
7.
7.S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Angewandte Chemie 55(5), 16661669 (2016).
http://dx.doi.org/10.1002/anie.201507568
8.
8.K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, Reviews of Modern Physics 82(2), 16331690 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1633
9.
9.H. Feldner, Z. Y. Meng, T. C. Lang, F. F. Assaad, S. Wessel, and A. Honecker, Physical Review Letters 106(22), (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.226401
10.
10.Y. W. Son, M. L. Cohen, and S. G. Louie, Nature 444(7117), 347349 (2006).
http://dx.doi.org/10.1038/nature05180
11.
11.Y. Li, Z. Zhou, S. Zhang, and Z. Chen, Journal of the American Chemical Society 130(49), 1673916744 (2008).
http://dx.doi.org/10.1021/ja805545x
12.
12.A. R. Botello-Méndez, F. López-Urías, M. Terrones, and H. Terrones, Nano letters 8(6), 15621565 (2008).
http://dx.doi.org/10.1021/nl072511q
13.
13.X. Peng, A. Copple, and Q. Wei, Journal of Applied Physics 116(14), 144301 (2014).
http://dx.doi.org/10.1063/1.4897461
14.
14.Y. Du, H. Liu, B. Xu, L. Sheng, J. Yin, C. G. Duan, and X. Wan, Scientific reports 5, 8921 (2015).
http://dx.doi.org/10.1038/srep08921
15.
15.G. Grüner, Reviews of Modern Physics 60(4), 11291181 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.1129
16.
16.E. Fawcett, Reviews of Modern Physics 60(1), 209283 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.209
17.
17.G. Grüner, Reviews of Modern Physics 66(1), 124 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1
18.
18.E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Reviews of Modern Physics 87(2), 457482 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.457
19.
19.P. Dai, Reviews of Modern Physics 87(3), 855896 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.855
20.
20.J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal of chemical physics 118(18), 82078215 (2003).
http://dx.doi.org/10.1063/1.1564060
21.
21.G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008).
22.
22.J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nature communications 5, 4475 (2014).
23.
23.E. C. Stoner, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 154(883), 656678 (1936).
http://dx.doi.org/10.1098/rspa.1936.0075
24.
24.D. Jérome and H. J. Schulz, Advances in Physics 31(4), 299490 (1982).
http://dx.doi.org/10.1080/00018738200101398
25.
25.T. Nakamura, G. Saito, T. Inukai, T. Sugano, M. Kinoshita, and M. Konno, Solid State Communications 75(7), 583586 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90423-9
26.
26.K. Kikuchi, K. Murata, Y. Honda, T. Namiki, K. Saito, H. Anzai, K. Kobayashi, T. Ishiguro, and I. Ikemoto, Journal of the Physical Society of Japan 56(12), 42414244 (1987).
http://dx.doi.org/10.1143/JPSJ.56.4241
27.
27.X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and K. F. Mak, Nat Nano 10(9), 765769 (2015).
http://dx.doi.org/10.1038/nnano.2015.143
28.
28.J. H. Samson, Journal of Physics: Condensed Matter 8(5), 569 (1996).
http://dx.doi.org/10.1088/0953-8984/8/5/007
29.
29.J. E. Hirsch, Physical Review Letters 53(24), 23272330 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.2327
30.
30.H. Fehske, G. Hager, and E. Jeckelmann, EPL (Europhysics Letters) 84(5), 57001 (2008).
http://dx.doi.org/10.1209/0295-5075/84/57001
31.
31.Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. H. Cho, L. Ma, X. Niu, S. Kim, Y. W. Son, D. Feng, S. Li, S. W. Cheong, X. H. Chen, and Y. Zhang, Nature nanotechnology 10(3), 270276 (2015).
http://dx.doi.org/10.1038/nnano.2014.323
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948537
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948537
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948537
2016-04-28
2016-09-26

Abstract

The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave(SDW) caused by electron-electron interaction and charge density wave(CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948537.html;jsessionid=rkh63F0Gi0Z34ZMqTXIBApNx.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948537&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948537&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948537'
Right1,Right2,Right3,