Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4948538
1.
1.L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
2.
2.S. A. Ktitorov, G. S. Simin, and V. Y. Sindalovskii, Sov. Phys.–Sol. State 13, 1872 (1972), [Fizika Tverdogo Tela13, 2230 (1971)].
3.
3.Y. Shimada, K. Hirakawa, M. Odnoblioudov, and K. A. Chao, Phys. Rev. Lett. 90, 046806 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.046806
4.
4.P. G. Savvidis, B. Kolasa, G. Lee, and S. J. Allen, Phys. Rev. Lett. 92, 196802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.196802
5.
5.N. Sekine and K. Hirakawa, Phys. Rev. Lett. 94, 057408 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.057408
6.
6.L. Esaki and L. L. Chang, Phys. Rev. Lett. 33, 495 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.495
7.
7.Semiconductor Superlattices, Growth and Electronic Properties, edited by H. T. Grahn (World Scientific, Singapore, 1995).
8.
8.A. Wacker, Phys. Rep. 357, 1 (2002).
9.
9.L. L. Bonilla and H. T. Grahn, Rep. Prog. Phys. 68, 577 (2005).
http://dx.doi.org/10.1088/0034-4885/68/3/R03
10.
10.A. A. Andronov, E. P. Dodin, D. I. Zinchenko, and Y. N. Nozdrin, J. Phys.: Conf. Ser. 193, 012079 (2009).
http://dx.doi.org/10.1088/1742-6596/193/1/012079
11.
11.H. Schneider, H. T. Grahn, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 65, 2720 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2720
12.
12.A. Sibille, J. F. Palmier, and F. Laruelle, Phys. Rev. Lett. 80, 4506 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4506
13.
13.M. Helm, W. Hilber, G. Strasser, R. De Meester, F. M. Peeters, and A. Wacker, Phys. Rev. Lett. 82, 3120 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3120
14.
14.A. Andronov, E. Dodin, D. Zinchenko, Y. Nozdrin, M. Ladugin, A. Marmalyuk, A. Padalitsa, V. Belyakov, I. Ladenkov, and A. Fefelov, JETP Lett+ 102, 207 (2015).
http://dx.doi.org/10.1134/S0021364015160031
15.
15.A. Wacker, M. Lindskog, and D. Winge, Sel. Top. in Quantum Electron., IEEE Journal of 19, 1200611 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2239613
16.
16.J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, 2013).
17.
17.S.-C. Lee, F. Banit, M. Woerner, and A. Wacker, Phys. Rev. B 73, 245320 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245320
18.
18.T. Schmielau and M. Pereira, Appl. Phys. Lett. 95, 231111 (2009).
http://dx.doi.org/10.1063/1.3272675
19.
19.T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B 79, 195323 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195323
20.
20.G. Haldaś and, A. Kolek, and I. Tralle, Quantum Electron., IEEE Journal of 47, 878 (2011).
http://dx.doi.org/10.1109/JQE.2011.2130512
21.
21.T. Grange, Phys. Rev. B 92, 241306 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.241306
22.
22.R. Tsu and G. Döhler, Phys. Rev. B 12, 680 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.680
23.
23.D. Calecki, J. F. Palmier, and A. Chomette, J. Phys. C: Solid State Phys. 17, 5017 (1984).
http://dx.doi.org/10.1088/0022-3719/17/28/017
24.
24.R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).
25.
25.A. Wacker and A.-P. Jauho, Phys. Rev. Lett. 80, 369 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.369
26.
26. We also include level shifts due to the real part of the self-energies here.
27.
27.R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, Nature Physics 3, 329 (2007).
http://dx.doi.org/10.1038/nphys577
28.
28. However, we refrain from making a definite statement on specific values, as our model showed inaccuracies for some quantum cascade lasers at such low temperatures.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4948538
Loading
/content/aip/journal/adva/6/4/10.1063/1.4948538
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4948538
2016-04-28
2016-12-08

Abstract

We analyze theoretically a superlattice structure proposed by A. Andronov et al. [JETP Lett. , 207 (2015)] to give Terahertz gain for an operation point with positive differential conductivity. Here we confirm the existence of gain and show that an optimized structure displays gain above 20 cm−1 at low temperatures, so that lasing may be observable. Comparing a variety of simulations, this gain is found to be strongly affected by elastic scattering. It is shown that the dephasing modifies the nature of the relevant states, so that the common analysis based on Wannier-Stark states is not reliable for a quantitative description of the gain in structures with extremely diagonal transitions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4948538.html;jsessionid=WwsmQLtoDeIGnqLeCWeX44Tw.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4948538&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4948538&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948538'
Right1,Right2,Right3,