Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.International Technology Roadmap for Semiconductors 2013 edition, Front End Processes,
2.K. O. Jeppson and C. M. Svensson, J. Appl. Phys. 48, 2004 (1977).
3.S. Mahapatra, D. Saha, D. Varghese, and P. B. Kumar, IEEE Trans. Electron Dev. 53, 1583 (2006).
4.Z. Liu, T. Saito, T Matsuda, K. Ando, S. Ito, M. Wilde, and K. Fukutani, in IEEE Proceedings of International Reliability Physics Symposium (IRPS2008), 705.
5.S. Fujii and K. Sakuma, in IEEE Proceedings of International Reliability Physics Symposium (IRPS2013), 3B.5.1.
6.R. Gale, F. J. Feigl, C. W. Magee, and D. R. Young, J. Appl. Phys. 54, 6938 (1983).
7.Y. Kawashima, Z. Liu, K. Terashima, K. Hamada, K. Fukutani, M. Wilde, S. Aoyagi, and M. Kudo, Appl. Surf. Sci. 212–213, 804 (2003).
8.J. Krauser, F. Wulf, M. A. Briere, J. Steiger, and D. Braeunig, Microelectron. Eng. 22, 65 (1993).
9.M. Ionescu, B. Richards, K. McIntosh, R. Siegele, E. Stelcer, O. Hawas, D. Cohen, and T. Chandra, Mater. Sci. Forum 539-543, 3551 (2007).
10.D. E. Barofsky and E.W. Mueller, Surf. Sci. 10, 177 (1968).
11.T. F. Kelly and M. K. Miller, Rev. Sci. Instrum. 78, 031101 (2007).
12.G. L. Kellogg and T. T. Tsong, J. Appl. Phys. 51, 1184 (1980).
13.Y. Shimizu, Y. Kawamura, M. Uematsu, M. Tomita, T. Kinno, N. Okada, M. Kato, H. Uchida, M. Takahashi, H. Ito, H. Ishikawa, Y. Ohji, H. Takamizawa, Y. Nagai, and K. M. Itoh, J. Appl. Phys. 109, 036102 (2011).
14.K. Hono, T. Ohkubo, Y. M. Chen, M. Kodzuka, K. Oh-ishi, H. Sepehri-Amin, F. Li, T. Kinno, S. Tomiya, and Y. Kanitani, Ultramicroscopy 111, 576 (2011).
15.N. Dawahre, G. Shen, S. Balci, W. Baughman, D. Wilbert, N. Harris, L. Butler, R. Martens, S. Kim, and P. Kung, J. Electron. Mater. 41, 801 (2012).
16.D. J. Larson, R. L. Alvis, D. F. Lawrence, T. J. Prosa, R. M. Ulfig, D. A. Reinhard, P. H. Clifton, S. S. A. Gerstl, J. H. Bunton, D. R. Lenz, T. F. Kelly, and K. Stiller, Microsc. Microanal. 14, 1254 (2008).
17.K. Inoue, F. Yano, A. Nishida, H. Takamizawa, T. Tsunomura, Y. Nagai, and M. Hasegawa, Ultramicroscopy 109, 1479 (2009).
18.K. Inoue, F. Yano, A. Nishida, T. Tsunomura, T. Toyama, Y. Nagai, and M. Hasegawa, Appl. Phys. Lett. 92, 103506 (2008).
19.H. Takamizawa, K. Inoue, Y. Shimizu, T. Toyama, F. Yano, T. Tsunomura, A. Nishida, T. Mogami, and Y. Nagai, Appl. Phys. Express 4, 036601 (2011).
20.K. Inoue, F. Yano, A. Nishida, T. Tsunomura, T. Toyama, Y. Nagai, and M. Hasegawa, Appl. Phys. Lett. 93, 133507 (2008).
21.B. Han, H. Takamizawa, Y. Shimizu, K. Inoue, Y. Nagai, F. Yano, Y. Kunimune, M. Inoue, and A. Nishida, Appl. Phys. Lett. 107, 023506 (2015).
22.D. Haley, S. V. Merzlikin, P. Choi, and D. Raabe, Int. J. Hydrogen Energy 39, 12221 (2014).
23.G. Sundell, M. Thuvander, A. K. Yatim, H. Nordin, and H.-O. Andren, Corros. Sci. 90, 1 (2015).
24.H. Takamizawa, K. Hoshi, Y. Shimizu, F. Yano, K. Inoue, S. Nagata, T. Shikama, and Y. Nagai, Appl. Phys. Express 6, 066602 (2013).
25.G. Sundell, M. Thuvander, and H.-O. Andren, Ultramicroscopy 132, 285 (2013).
26.Y. Sakurai, Y. Kunimune, M. Inoue, Y. Maruyama, A. Nishida, and T. Ide, Jpn. J. Appl. Phys. 53, 08LC03 (2014).
27.S. Koelling, N. Innocenti, G. Hellings, M. Gilbert, A. K. Kambham, K. De Meyer, and W. Vandervorst, Ultramicroscopy 111, 540 (2011).

Data & Media loading...


Article metrics loading...



We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO/SiN/SiO (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actual hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd