Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4942549
1.
1.G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.797
2.
2.H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1015
3.
3.P. Schlottmann, in Handbook of Magnetic Materials, edited by K.H.J. Buschow (Elsevier B. V, Amsterdam, 2015), Vol. 23, p. 85, Chapter 2.
4.
4.J.A. Hertz, Phys. Rev. B 14, 1165 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.1165
5.
5.A.J. Millis, Phys. Rev. B 48, 7183 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.7183
6.
6.T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995).
http://dx.doi.org/10.1143/JPSJ.64.960
7.
7.P. Schlottmann, Phys. Rev. B 59, 12379 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12379
8.
8.P. Schlottmann, Phys. Rev. B 68, 125105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125105
9.
9.P. Schlottmann, Phys. Rev. B 89, 014511 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.014511
10.
10.P. Schlottmann, Phys. Rev. B 92, 045115 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.045115
11.
11.A.V. Chubukov, D.V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134512
12.
12.P. Schlottmann, Phys. Rev. B 73, 085110 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.085110
13.
13.P. Schlottmann, Phys. Rev. B 74, 235103 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.235103
14.
14.A.V. Chubukov, Physica C 469, 640 (2009).
http://dx.doi.org/10.1016/j.physc.2009.03.023
15.
15.P. Fulde and A. Ferrell, Phys. Rev. 135, A550 (1964);
http://dx.doi.org/10.1103/PhysRev.135.A550
15.A. Larkin and Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP20, 762 (1965)].
16.
16.R. Movshovich, T. Graf, D. Mandrus, J.D. Thompson, J.L. Smith, and Z. Fisk, Phys. Rev. B 53, 8241 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.8241
17.
17.S. Araki, M. Nakashima, R. Settai, T. Kobayashi, and Y. Onuki, J. Phys.: Condens. Matter 14, L377 (2002).
http://dx.doi.org/10.1088/0953-8984/14/21/102
18.
18.I.R. Walker, F.M. Grosche, D.M. Freye, and G.G. Lonzarich, Physica C 282-287, 303 (1997).
http://dx.doi.org/10.1016/S0921-4534(97)00267-0
19.
19.N.D. Mathur, F. M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, and G.G. Lonzarich, Nature (London) 394, 39 (1998).
http://dx.doi.org/10.1038/27838
20.
20.S. Kawasaki, T. Mito, Y. Kawasaki, H. Kotegawa, G.-Q. Zheng, Y. Kitaoka, H. Shishido, S. Araki, R. Settai, and Y. Onuki, J. Phys. Soc. Jpn. 73, 1647 (2004).
http://dx.doi.org/10.1143/JPSJ.73.1647
21.
21.Y. Kawasaki, K. Ishida, S. Kawasaki, T. Mito, G.-q. Zheng, Y. Kitaoka, Ch. Geibel, and F. Steglich, J. Phys. Soc. Jpn. 73, 194 (2004).
http://dx.doi.org/10.1143/JPSJ.73.194
22.
22.T. Muramatsu, N. Tateiwa, T.C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga, and Y. Onuki, J. Phys. Soc. Jpn. 70, 3362 (2001).
http://dx.doi.org/10.1143/JPSJ.70.3362
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4942549
Loading
/content/aip/journal/adva/6/5/10.1063/1.4942549
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4942549
2016-02-18
2016-09-24

Abstract

The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point(QCP) is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if is commensurate with the lattice, i.e. equal to /2). If the vector is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate) is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |/2|.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4942549.html;jsessionid=dnAjilS-ei8jSbKav5ruQaJn.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4942549&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4942549&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4942549'
Right1,Right2,Right3,