Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4942553
1.
1.F. Matsukura, Y. Tokura, and H. Ohno, Control of magnetism by electric fields, Nature Nanotechnol. 10, 209 (2015).
2.
2.B.Y. Wang, J.Y. Hong, K.H.O. Yang, Y.L. Chan, D.H. Wei, H.J. Lin, and M.T. Lin, “How Antiferromagnetism Drives the Magnetization of a Ferromagnetic Thin Film to Align Out of Plane,” Phys. Rev. Lett. 110, 117203 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.117203
3.
3.A.D. Lamirand, M.M. Soares, A.Y. Ramos, H.C.N. Tolentino, M.D. Santis, J.C. Cezar, A.D. Siervo, and M. Jamet, “Robust perpendicular exchange coupling in an ultrathin CoO/PtFe double layer: Strain and spin orientation,” Phys. Rev. B 88, 140401(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.140401
4.
4.S.C. Chang, J.S. Tsay, C.H.T. Chang, and Y.D. Yao, “Pinning of magnetic moments at the interfacial region of ultrathin CoO/Co bilayers grown on Ge(100),” Appl. Surf. Sci. 354, 95 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.04.019
5.
5.A. Kohn, A. Kovacs, R. Fan, G.J. McIntyre, R.C.C. Ward, and J.P. Goff, “The antiferromagnetic structures of IrMn3 and their influence on exchange-bias,” Sci. Rep. 3, 2412 (2013).
http://dx.doi.org/10.1038/srep02412
6.
6.F.J.T. Goncalves, R.D. Desautels, S. Su, T. Drysdale, J. Lierop, K.W. Lin, D.S. Schmool, and R.L. Stamps, “Anisotropy engineering using exchange bias on antidot templates,” AIP Advances 5, 067101 (2015).
http://dx.doi.org/10.1063/1.4922055
7.
7.K. O’Grady, L.E. Fernandez-Outon, and G. Vallejo-Fernandez, “A new paradigm for exchange bias in polycrystalline thin films,” J. Magn. Magn. Mater. 322, 883 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.12.011
8.
8.A.J. Annunziata, P.L. Trouilloud, S. Bandiera, S.L. Brown, E. Gapihan, E.J. O’Sullivan, and D.C. Worledge, “Materials investigation for thermally-assisted magnetic random access memory robust against 400 degrees C temperatures,” J. Appl. Phys. 117, 17B739 (2015).
http://dx.doi.org/10.1063/1.4917066
9.
9.G. Vinai, J. Moritz, S. Bandiera, I.L. Prejbeanu, and B. Dieny, “Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting,” Appl. Phys. Lett. 104, 162401 (2014).
http://dx.doi.org/10.1063/1.4872265
10.
10.J.C. Read, T.M. Nakatani, N. Smith, Y.S. Choi, B.R. York, E. Brinkman, and J.R. Childress, “Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers,” J. Appl. Phys. 118, 043907 (2015).
http://dx.doi.org/10.1063/1.4927511
11.
11.Y.H. Tang, F.C. Chu, and N. Kioussis, “Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions,” Sci. Rep. 5, 11341 (2015).
http://dx.doi.org/10.1038/srep11341
12.
12.D. Ledue, A. Maitre, F. Barbe, and L. Lechevallier, “Temperature dependence of the exchange bias properties of ferromagnetic/antiferromagnetic polycrystalline bilayers,” J. Magn. Magn. Mater. 372, 134 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.07.021
13.
13.J.A.D. Toro, D.P. Marques, P. Muñiz, V. Skumryev, J. Sort, D. Givord, and J. Nogués, “High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect,” Phys. Rev. Lett. 115, 057201 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.057201
14.
14.H.W. Chang, J.S. Tsay, Y.L. Chiou, K.T. Huang, W.Y. Chan, and Y.D. Yao, “Coercivity enhancement of ultrathin Co/Ge(111) films by Co/O interfacial anisotropy,” J. Magn. Magn. Mater. 310, E741 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.11.114
15.
15.C.H.T. Chang, T.Y. Fu, and J.S. Tsay, “Interaction transfer of silicon atoms forming Co silicide for Co/-Ag/Si(111) and related magnetic properties,” J. Appl. Phys. 117, 17B733 (2015).
http://dx.doi.org/10.1063/1.4917062
16.
16.H.W. Chang, J.S. Tsay, S.C. Chang, P.C. Chuang, and Y.D. Yao, “Exchange bias of ultrathin CoO/Co bilayers on Ge(111) and Ge(100) surfaces,” J. Alloys Comp. 562, 69 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.168
17.
17.W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. CRC Press, 2015.
18.
18.M. Gruyters and D. Riegel, “Optimized exchange biasing by controlled in situ oxidation,” J. Appl. Phys. 88, 6610 (2000).
http://dx.doi.org/10.1063/1.1321782
19.
19.J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, and M.D. Baró, “Exchange bias in nanostructures,” Physics Reports 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
20.
20.S. Giri, M. Patra, and S. Majumdar, “Exchange bias effect in alloys and compounds,” J. Phys.: Condens. Matter 23, 073201 (2011).
http://dx.doi.org/10.1088/0953-8984/23/7/073201
21.
21.J. Nogués and I.K. Schuller, “Exchange bias,” J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
22.
22.G. Vallejo-Fernandez, L.E. Fernandez-Outon, and K. O’Grady, “Measurement of the anisotropy constant of antiferromagnets in metallic polycrystalline exchange biased systems,” Appl. Phys. Lett. 91, 212503 (2007).
http://dx.doi.org/10.1063/1.2817230
23.
23.G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, second ed. (VCH, Weiheim, 1985).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4942553
Loading
/content/aip/journal/adva/6/5/10.1063/1.4942553
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4942553
2016-02-18
2016-09-26

Abstract

Variations of the blocking temperature and related structures for CoO/Co/Ge(100) films are investigated by employing reflection high energy electron diffraction,Auger electron spectroscopy, and surface magneto-optic Kerr effect measurements. By increasing the CoO thickness, the blocking temperature is smaller than the Neel temperature of CoO. The monotonous increase of the blocking temperature is mainly attributed to the increasing thermal stability of the antiferromagnetic grains by way of increasing the antiferromagnetic thickness. The deviation of the blocking temperature from the linear relation and the full widths at half maximum of the diffraction spots show a similar trend. The minimums appear around 25 monolayer of CoO and are related to the formation of larger grains.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4942553.html;jsessionid=_EvNEaaOo3FKKAwC6Slq6Zx2.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4942553&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4942553&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4942553'
Right1,Right2,Right3,