Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B.J. van Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature 448, 571 (2007).
2.W. Han, R.K. Kawakami, M. Gmitra, and J. Fabian, “Graphene spintronics,” Nat. Nanotechnol. 9, 794 (2014).
3.E. Sosenko, H. Wei, and V. Aji, “Effect of contacts on spin lifetime measurements in graphene,” Phys. Rev. B 89, 245436 (2014).
4.D. Pesin and A.H. MacDonald, “Spintronics and pseudospintronics in graphene and topological insulators,” Nat. Mater. 11, 409 (2012).
5.X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, and R.S. Ruoff, “Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper,” J. Am. Chem. Soc. 133, 2816 (2011).
6.L.O. Nyakitit, R.L. Myers-Ward, V.D. Wheeler, E.A. Imhoff, F.J. Bezares, J.D. Caldwell, A.L. Friedman, B.R. Matis, J.W. Baldwin, P.M. Campbell, J.C. Culbertson, C.R. Eddy, Jr., G.G. Jernigan, H. Chun, and D. Kurt Gaskill, “Bilayer graphene grown on 4H-SiC (0001) step-free mesas,” Nano Lett. 12(4), 17491756 (2012).
7.C.D. Cress, J.G. Champlain, I.S. Esqueda, J.T. Robinson, A.L. Friedman, and J.J. McMorrow, “Total ionizing dose induced charge carrier scattering in graphene devices,” IEEE Trans. Nuc. Sci. 59(6), 3045 (2012).
8.A.V. Kretinin, Y. Cao, J.S. Tu, G.L. Yu, R. Jalil, K.S. Novoselov, S.J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C.R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Tanigushi, A.K. Geim, and R.V. Gorbachev, “Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,” Nano Lett. 14(6), 3270 (2014).
9.W. Han, K. Pi, K.M. McCreary, Y. Li, J.J.I. Wong, A.G. Swartz, and R.K. Kawakami, “Tunneling spin injection into single layer graphene,” Phys. Rev. Lett. 105, 167202 (2010).
10.B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert, “Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene?,” Appl. Phys. Lett. 97, 092502 (2010).
11.I. Neumann, M.V. Costache, G. Bridoux, J.F. Sierra, and S.O. Valenzuela, “Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers,” Appl. Phys. Lett. 103, 112401 (2013).
12.T. Yamaguchi, Y. Inoue, S. Masubuchi, S. Morikawa, M. Onuki, K. Watanabe, T. Taniguchi, R. Moriya, and T. Machida, “Electrical spin injection into graphene through monolayer hexagonal boron nitride,” Appl. Phys. Ex. 6, 073001 (2013).
13.E. Cobas, A.L. Friedman, O.M.J van ‘t Erve, J.T. Robinson, and B.T. Jonker, “Graphene as a tunnel barrier: graphene based magnetic tunnel junctions,” Nano Lett. 12, 3000 (2012).
14.O.M.J. van ‘t Erve, A.L. Friedman, C.H. Li, J.T. Robinson, J. Connell, L.J. Lauhon, and B.T. Jonker, “Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers,” Nat. Comm. 6, 7541 (2015).
15.A.L. Friedman, O.M.J. van ‘t Erve, C. Li, J.T. Robinson, and B.T. Jonker, “Homoepitaxial tunnel barriers with functionalized graphene on graphene for charge and spin transport,” Nat. Comm. 5, 3161 (2014).
16.A.L. Friedman, O.M.J. van ‘t Erve, J.T. Robinson, K.E. Whitener, Jr., and B.T. Jonker, “Hydrogenated graphene as a homoepitaxial tunnel barrier for charge and spin transport in graphene,” ACS Nano 9(7), 67476755 (2015).
17.D.-H. Chae, D. Zhang, X. Huang, and K. von Klitzing, “Electronic transport in two stacked graphene monolayers,” Nano Lett. 12, 3905 (2012).
18.G.G. Jernigan, T.J. Anderson, J.T. Robinson, J.D. Caldwell, J.C. Culbertson, R. Myers-Ward, A.L. Davidson, M.G. Ancona, V.D. Wheeler, L.O. Nyakiti, A.L. Friedman, P.M. Campbell, and D. Kurt Gaskill, “Bilayer graphene by bonding CVD graphene to epitaxial graphene,” J. Vac. Sci. Tech. B 30, 03D110 (2012).
19.J.T. Robinson, S.W. Schmucker, B. Diaconescu, J.P. Long, J.C. Culbertson, T. Ohta, A.L. Friedman, and T. Beechem, “Electronic hybridization of stacked graphene films,” ACS Nano 7(1), 637644 (2013).
20.J.T. Robinson, J. S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdinov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, and E.S. Snow, “Properties of fluorinated graphene films,” Nano Lett. 10(8), 30013005 (2010).
21.R. Stine, W.K. Lee, K.E. Whitener, Jr., J.T. Robinson, and P.E. Sheehan, “Chemical stability of graphene fluoride produced by esposure to XeF2,” ACS Nano 13(9), 43114316 (2013).
22.K.E. Whitener, Jr., W.K. Lee, P.M. Campbell, J.T. Robinson, and P.E. Sheehan, “Chemical hydrogenation of single-layer graphene enables completely reversible removal of electrical conductivity,” Carbon 72, 348 (2014).
23.B.R. Matis, F.A. Bulat, A.L. Friedman, B.H. Houston, and J.W. Baldwin, “Giant negative magnetoresistance and a transition from strong to weak localization in hydrogenated graphene,” Phys. Rev. B 85, 105437 (2012).
24.B.R. Matis, J.S. Burgass, F.A. Bulat, A.L. Friedman, B.H. Houston, and J.W. Baldwin, “Surface doping and bandgap tunability in hydrogenated graphene,” ACS Nano 6(1), 1722 (2012).
25.B.J. Jonsson-Akerman, R. Escudero, C. Leighton, S. Kim, I.K. Schuller, and D.A. Rabson, “Reliability of normal-state current-voltage characteristics as an indicator of tunnel-junction barrier quality,” Appl. Phys. Lett. 77, 18701872 (2000).
26.B.R. Matis, F.A. Bulat, A.L. Friedman, B.H. Houston, and J.W. Baldwin, “Chemically functionalized graphene for bipolar electronics,” Appl. Phys. Lett. 102, 103114 (2013).
27.A. Avsar et al., “Toward wafer scale fabrication of graphene based spin valve devices,” Nano Lett. 11, 2363 (2011).
28.G. Miao, M. Munzengerg, and J. Moodera, “Tunneling path toward spintronics,” Rep. Prog. Phys. 74, 036501 (2011).
29.F. Volmer, M. Drogeler, E. Maynicke, N. von den Driesch, M.L. Boschen, G. Guntherodt, and B. Beschoten, “Role of MgO barriers for spin and charge transport in Co/MgO/graphene nonlocal spin-valve devices,” Phys. Rev. B 88, 161405(R) (2013).
30.M. Wang and C.M. Li, “Investigation of doping effects on magnetic properties of the hydrogenated and fluorinated graphene structures by extra charge mimic,” Phys. Chem. Chem. Phys. 15, 3786 (2013).
31.P. Dev and T.L. Reinecke, “Substrate effects: disappearance of adsorbate-induced magnetism in graphene,” Phys. Rev. B 89, 035404 (2014).
32.W.K. Lee, K.E. Whitener, Jr., J.T. Robinson, and P.E. Sheehan, “Patterning magnetic regions in hydrogenated graphene via e-beam irradiation,” Adv. Mater. 27, 1774 (2015).
33.A.L. Friedman, H. Chun, Y.J. Jung, E.R. Glaser, D. Heiman, and L. Menon, “Possible room-temperature ferromagnetism in hydrogenated carbon nanotubes,” Phys. Rev. B 81, 115461 (2010).
34.C.H. Li, O.M.J. van ‘t Erve, and B.T. Jonker, “Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts,” Nat. Comm. 2, 245 (2011).
35.O.M.J. van ‘t Erve, A.L. Friedman, E. Cobas, C.H. Li, J.T. Robinson, and B.T. Jonker, “Low-resistance spin injection into silicon using graphene tunnel barriers,” Nat. Nanotech. 7, 737 (2012).

Data & Media loading...


Article metrics loading...



Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd