Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4942556
1.
1.E. Burzo, R. Grossinger, P. Hundegger, H. R. Kirchmayr, R. Krewenka, O. Mayerhofer, and R. Lemaire, “Magnetic-properties of ZrCo5.1-xFex Alloys,” J. Appl. Phys. 70(10), 6550 (1991).
http://dx.doi.org/10.1063/1.349904
2.
2.G. V. Ivanova and N. N. Shchegoleva, “The Microstructure of a Magnetically Hard Zr2Co11 Alloy,” Phys. Met. Metall 107(3), 270 (2009).
http://dx.doi.org/10.1134/S0031918X09030089
3.
3.W. Y. Zhang, S. R. Valloppilly, X. Z. Li, R. Skomski, J. E. Shield, and D. J. Sellmyer, “Coercivity Enhancement in Zr2Co11-Based Nanocrystalline Materials Due to Mo Addition,” IEEE Trans. Magn 48(11), 3603 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2198453
4.
4.B. Balasubramanian, B. Das, R. Skomski, W. Y. Zhang, and D. J. Sellmyer, “Novel Nanostructured Rare-Earth-Free Magnetic Materials with High Energy Products,” Adv. Mater. 25(42), 6090 (2013).
http://dx.doi.org/10.1002/adma.201302704
5.
5.Y. L. Jin, W. Y. Zhang, R. Skomski, S. Valloppilly, J. E. Shield, and D. J. Sellmyer, “Phase composition and nanostructure of Zr2Co11-based alloys,” J. Appl. Phys. 115(17), (2014).
6.
6.X. Zhao, M. C. Nguyen, W. Y. Zhang, C. Z. Wang, M. J. Kramer, D. J. Sellmyer, X. Z. Li, F. Zhang, L. Q. Ke, V. P. Antropov, and K. M. Ho, “Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm,” Phys. Rev. Lett. 112(4), (2014).
7.
7.B. G. Demczyk and S. F. Cheng, “Structure of Zr2Co11 and HfCo7 Intermetallic Compounds,” J. Appl. Crystallogr. 24, 1023-1026 (1991).
http://dx.doi.org/10.1107/S0021889891007331
8.
8.A. M. Gabay, Y. Zhang, and G. C. Hadjipanayis, “Cobalt-rich Magnetic Phases in Zr-Co Alloys,” J. Magn. Magn. Mater. 236(1-2), 37 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00446-2
9.
9.W. Y. Zhang, X. Z. Li, S. Valloppilly, R. Skomski, J. E. Shield, and D. J. Sellmyer, “Magnetism of Rapidly Quenched Rhombohedral Zr2Co11-based Nanocomposites,” J. Phys. D: Appl. Phys. 46(13), (2013).
10.
10.W. Y. Zhang, S. Valloppilly, X. Z. Li, Y. Liu, S. Michalski, T. A. George, R. Skomski, and D. J. Sellmyer, “Magnetic Hardening of Zr2Co11:(Ti, Si) Nanomaterials,” J. Alloys Compd. 587, 578 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.10.234
11.
11.Z. Hou, W. Wang, S. Xu, J. Zhang, C. Wu, and F. Su, “Hard Magnetic Properties of Melt-Spun Co82Zr18−xTix Alloys,” Physica B: Condens. Matter 407(7), 1047-1050 (2012).
http://dx.doi.org/10.1016/j.physb.2011.09.138
12.
12.H. W. Chang, C. F. Tsai, C. C. Hsieh, C. W. Shih, W. C. Chang, and C. C. Shaw, “Magnetic Properties Enhancement of Melt Spun CoZrB Ribbons by Elemental Substitutions,” J. Magn. Magn. Mater. 346, 74 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.07.012
13.
13.T. Ishikawa and K. Ohmori, “Hard Magnetic Phase in Rapidly Quenched Zr-Co-B Alloys,” IEEE Trans. Magn 26(5), 1370-1372 (1990).
http://dx.doi.org/10.1109/20.104381
14.
14.T. Saito, “High Performance Co-Zr-B Melt-spun Ribbons,” Appl. Phys. Lett. 82(14), 2305-2307 (2003).
http://dx.doi.org/10.1063/1.1565694
15.
15.X. Zhao, L. Ke, M. C. Nguyen, C.-Z. Wang, and K.-M. Ho, “Structures and Magnetic Properties of Co-Zr-B Magnets Studied by First-principles Calculations,” J. Appl. Phys. 117(24), 243902 (2015).
http://dx.doi.org/10.1063/1.4922984
16.
16.J. D. Fast, Gases in Metals (Macmillan, London, 1976).
17.
17.R. Skomski, in Rare-Earth—Iron Permanent Magnets, edited by J. M. D. Coey (University Press, Oxford, 1996), pp. 178-217.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4942556
Loading
/content/aip/journal/adva/6/5/10.1063/1.4942556
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4942556
2016-02-18
2016-10-01

Abstract

The role of B on the microstructure and magnetism of ZrCoMoB ribbons prepared by arc melting and melt spinning is investigated. Microstructure analysis show that the ribbons consist of a hard-magnetic rhombohedral ZrCo phase and a minor amount of soft-magnetic Co. We show that the addition of B increases the amount of hard-magnetic phase, reduces the amount of soft-magnetic Co and coarsens the grain size from about 35 nm to 110 nm. There is a monotonic increase in the volume of the rhombohedral ZrCo unit cell with increasing B concentration. This is consistent with a previous theoretical prediction that B may occupy a special type of large interstitial sites, called interruption sites. The optimum magnetic properties, obtained for = 1, are a saturation magnetization of 7.8 kG, a coercivity of 5.4 kOe, and a maximum energy product of 4.1 MGOe.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4942556.html;jsessionid=afNRgJMSW3X1fT5yhjPaDlzy.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4942556&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4942556&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4942556'
Right1,Right2,Right3,