Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4942950
1.
1.R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, “Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry,” Science 327, 177-180 (2010).
http://dx.doi.org/10.1126/science.1180085
2.
2.S. Sachdev, Quantum Phase Transitions (University Press, Cambridge, 1999).
3.
3.D. Bitko, T. F. Rosenbaum, and G. Aeppli, “Quantum Critical Behavior for a Model Magnet,” Phys. Rev. Lett. 77, 940-943 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.940
4.
4.H. M. Rønnow, J. Jensen, R. Parthasarathy, G. Aeppli, T. F. Rosenbaum, D. F. McMorrow, and C. Kraemer, “Magnetic excitations near the quantum phase transition in the Ising ferromagnet LiHoF4,” Phys. Rev. B 75, 054426-1-8 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.054426
5.
5.J. M. Coey, Magnetism and Magnetic Materials (University Press, Cambridge, 2010).
6.
6.Ph. Phillips, Advanced Solid State Physics (University Press, Cambridge, 2012).
7.
7.E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Z. Phys. 31, 253-258 (1925).
http://dx.doi.org/10.1007/BF02980577
8.
8.R. Skomski and J. M. D. Coey, Permanent Magnetism (Institute of Physics, Bristol, 1999).
9.
9.R. Skomski, Simple Models of Magnetism (University Press, Oxford, 2008).
10.
10.G. Asti and S. Rinaldi, “Singular points in the magnetization curve of a polycrystalline ferromagnet,” J. Appl. Phys. 45, 3600-3610 (1974).
http://dx.doi.org/10.1063/1.1663823
11.
11.E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. London A240, 599-608 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4942950
Loading
/content/aip/journal/adva/6/5/10.1063/1.4942950
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4942950
2016-02-23
2016-09-28

Abstract

It is investigated how a transverse magnetic field affects the quantum-mechanical character of LiHoF, a system generally considered as a textbook example for an Ising-like quantum-phase transition. In small magnetic fields, the low-temperature behavior of the ions is Ising-like, involving the nearly degenerate low-lying = ±  8 doublet. However, as the transverse field increases, there is a substantial admixture of states having || < 8. Near the quantum-phase-transition field, the system is distinctively non-Ising like, and all eigenstates yield ground-state contributions of comparable magnitude. A classical analog to this mechanism is the micromagnetic single point in magnets with uniaxial anisotropy. Since Ho3+ has = 8, the ion’s behavior is reminiscent of the classical limit ( = ∞), but quantum corrections remain clearly visible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4942950.html;jsessionid=DnNOo41Oan87auEGQWJn5L3B.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4942950&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4942950&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4942950'
Right1,Right2,Right3,