Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4942955
1.
1.O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P Liu, Adv. Mater. 23, 821 (2011).
http://dx.doi.org/10.1002/adma.201002180
2.
2.M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM. 64, 752 (2012).
http://dx.doi.org/10.1007/s11837-012-0351-z
3.
3.N. Poudyal and J. P. Liu, J. Phys. D: Appl. Phys. 46, 043001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/4/043001
4.
4.J. M. D. Coey, J. Phys.: Condens. Matter 26, 064211 (2014).
http://dx.doi.org/10.1088/0953-8984/26/6/064211
5.
5.Y. B. Yang, X. G. Chen, R. Wu, J. Z. Wei, X. B. Ma, J. Z. Han, H. L. Du, S. Q. Liu, C. S. Wang, Y. C. Yang, Y. Zhang, and J. B. Yang, J. Appl. Phys. 111, 07E312 (2012).
6.
6.D. T. Zhang, S. Cao, M. Yue, W. Q. Liu, J. X. Zhang, and Y. Qiang, J. Appl. Phys. 109, 07A722 (2011).
7.
7.N. V. Rama Rao, A. M. Gabay, W. F. Li, and G. C. Hadjipanayis, J. Phys. D: Appl. Phys. 46, 265001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/26/265001
8.
8.E. Adams, W. M. Hubbard, and A. M. Syeles, J. Appl. Phys. 23, 1207 (1952).
http://dx.doi.org/10.1063/1.1702032
9.
9.X. Guo, X. Chen, Z. Altounian, and J. Ström-Olsen, Phys. Rev. B 46, 14578 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.14578
10.
10.Y. B. Yanga, X. G. Chena, S. Guob, A. R. Yanb, Q. Z. Huang, M. M. Wud, D. F. Chend, Y. C. Yanga, and J. B. Yang, J. Magn. Magn. Mater. 330, 106 (2013).
http://dx.doi.org/10.1016/j.jmmm.2012.10.046
11.
11.J. Park, Y.K. Hong, J. Lee, W. Lee, S. G. Kim, and C. J. Choi, Metals 4, 455 (2014).
http://dx.doi.org/10.3390/met4030455
12.
12.W. Zhang, P. Kharel, S. Valloppilly, L. Yue, and D. J. Sellmyer, Phys. Status Solidi B 252, 1934 (2015).
http://dx.doi.org/10.1002/pssb.201552075
13.
13.D. T. Zhanga, W. T. Genga, M. Yue, W. Q. Liua, J. X. Zhanga, J. A. Sundararajanb, and Y. Qiang, J. Magn. Magn. Mater. 324, 1887 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.01.017
14.
14.N. V. Rama Rao, A. M. Gabay, and G. C. Hadjipanayis, J. Phys. D: Appl. Phys. 46, 062001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/6/062001
15.
15.V. V. Nguyen, N. Poudyal, X. B. Liu, J. P. Liu, K. Sun, M. J. Kramer, and J. Cui, Mater. Res. Express 1, 036108 (2014).
http://dx.doi.org/10.1088/2053-1591/1/3/036108
16.
16.V. V. Nguyen, N. Poudyal, X. Liu, J. P. Liu, K. Sun, M. J. Kramer, and J. Cui, IEEE Trans. Magn 50, 2105506 (2014).
17.
17.J. Cui, J. P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, T. Droubay, M. J. Kramer, N. A. Zarkevich, L. L. Wang, D. D. Johnson, M. Marinescu, I. Takeuchi, Q. Z. Huang, H. Wu, H. Reeve, N. V. Vuong, and J. P. Liu, J. Phys.: Condens. Matter 26, 064212 (2014).
http://dx.doi.org/10.1088/0953-8984/26/6/064212
18.
18.K. Kang, L. H. Lewis, and A. R. Moodenbaugh, J. Appl. Phys. 97, 10K302 (2005).
19.
19.C. S. Lakshmi and R. W. Smith, Mater. Sci. Eng. A 133, 241 (1991).
http://dx.doi.org/10.1016/0921-5093(91)90060-Z
20.
20.X. Guo, Z. Altounian, and J. O. Ström-Olsen, J. Appl. Phys. 69, 6067 (1991).
http://dx.doi.org/10.1063/1.347771
21.
21.J. Cui, J. P. Choi, G. Li, E. Polikarpov, J. Darsell, M. J. Kramer, N. A. Zarkevich, L. L. Wang, D. D. Johnson, M. Marinescu, Q. Z. Huang, H. Wu, N. V. Vuong, and J. P. Liu, J. Appl. Phys. 115, 17A743 (2014).
http://dx.doi.org/10.1063/1.4867230
22.
22.P. Kharel, P. Thapa, P. Lukashev, R. F. Sabirianov, E. Y. Tsymbal, D. J. Sellmyer, and B. Nadgorny, Phys. Rev. B 83, 024415 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.024415
23.
23.A. Kirkeminde, J. Shen, M. Gong, J. Cui, and S. Ren, Chem. Mater. 27, 4677 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01224
24.
24.K. Y. Ko, S. J. Choi, S. K. Yoon, and Y. S. Kwon, J. Magn. Magn. Mater. 310, e887 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.11.040
25.
25.J. B. Yang, W. B. Yelon, W. J. James, Q. Cai, M. Kornecki, S. Roy S, N. Ali, and P. Heritier, J. Phys.: Condens. Matter. 14, 6509 (2002).
http://dx.doi.org/10.1088/0953-8984/14/25/318
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4942955
Loading
/content/aip/journal/adva/6/5/10.1063/1.4942955
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4942955
2016-02-23
2016-10-01

Abstract

We report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product () of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while () value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4942955.html;jsessionid=jUEooOcYkbGy0VDyVU_bGj44.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4942955&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4942955&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4942955'
Right1,Right2,Right3,