Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943054
1.
1.Calvin H. Li, Paul Hodgins, and G.P. Peterson, J. Appl. Phys. 110, 054303 (2008).
http://dx.doi.org/10.1063/1.3626049
2.
2.E Lima, Jr., E De Biasi, M. Vasquez Mansilla, M E Saleta, M. Granada, H E Troiani, F B Effenberger, L M Rossi, H R Rechenberg, and R D Zysler, J. Phys. D:Appl. Phys. 46, 045002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/4/045002
3.
3.Ihab M. Obaidat, Bashar Issa, and Yousef Haik, Nanomaterials 5, 63 (2015).
http://dx.doi.org/10.3390/nano5010063
4.
4.Ian Baker, Qi Zeng, Weidong Li, and Charles R. Sullivan, J. Appl. Phys. 99, 08H106 (2006).
http://dx.doi.org/10.1063/1.2171960
5.
5.Dong-Hyun Kim, David E. Nikles, Duane T. Johnson, and Christopher S. Brazel, J. Magn. Magn. Mater. 320, 2390 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.05.023
6.
6.Ajay Kumar Gupta and Mona Gupta, Biomaterials 26, 3995 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
7.
7.Luis C. Branquinho, Marcus D. Carriao, Anderson S. Costa, Nicholas Zufelato, Marcelo H. Sausa, Ronei Miotto, Robert Ivkov, and Andris Bakuzis, Sci. Rep. 3, 3637 (2013).
http://dx.doi.org/10.1038/srep02887
8.
8.M. Thankur, K. De, S. Giri, S. Si, A. Kotal, and R. K. Mandal, J. Phys.:Condens. Matter. 18, 9093 (2005).
http://dx.doi.org/10.1088/0953-8984/18/39/035
9.
9.R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00706-0
10.
10.Justin Kim, Sharon Zhu, Yong X. Gan, and Keith Forward, Adv. Res. 3, 84 (2015).
http://dx.doi.org/10.9734/AIR/2015/13547
11.
11.Chaobo Huang, Stefaan J. Soenen, Joanna Rejman, Jesse Trekker, Liu Chengxun, Liesbet Lagae, Wim Ceelen, Claire Wilhelm, Jo Demeester, and Stefaan C. De Smedt, Adv. Funct. Mater. 22, 2479 (2012).
http://dx.doi.org/10.1002/adfm.201102171
12.
12.Hui Wu, Rui Zhang, Xinxin Liu, Dandan Lin, and Wei Pan, Chem. Mater. 3, 3506 (2007).
http://dx.doi.org/10.1021/cm070280i
13.
13.Minoru Miyauchi, Trevor J. Simmons, Jianjun Miao, Jennifer E. Gagner, Zachary H. Shriver, Udayanath Aich, Jonathan S. Dordick, and Robert J. Linhardt, ACS Appl. Mater. Interfaces 19, 1958 (2011).
http://dx.doi.org/10.1021/am200187x
14.
14.Chan-Hee Park, Seung-Ji Kang, Leonard. Tijing, Hem Raj Pant, and Cheol Sang Kim, Ceram. Int. 39, 9785 (2013).
http://dx.doi.org/10.1016/j.ceramint.2013.05.042
15.
15.Ta-Chun Lin, Feng-Huei Lin, and Jui-Che Lin, Acta Biomater. 8, 2704 (2012).
http://dx.doi.org/10.1016/j.actbio.2012.03.045
16.
16.G. Laroche1, Y. Marois1, R. Guidoin, M.W. King, L. Martin, T. How, and Y. Douville, J. Biomed. Mater. Res. 29, 1525 (1996).
http://dx.doi.org/10.1002/jbm.820291209
17.
17.Quinglei Zhang, Xiaopong Lu, and Lihua Zao, Membanes 27, 4524 (2015).
18.
18.M. Momtaz, J.-L. Dewez, and J. M. Brynaert, J. Membrane Sci. 250, 29 (2005).
http://dx.doi.org/10.1016/j.memsci.2004.10.011
19.
19.Wei Wu, Zhaohui Wu, Taekyung Yu, Chanfzhong Jiang, and Woo-Sik Kim, Sci. Technol. Adv. Mater. 16, 023501 (2013).
http://dx.doi.org/10.1088/1468-6996/16/2/023501
20.
20.Monika Hanesh, Geophys. J. Int. 177, 941 (2009).
http://dx.doi.org/10.1111/j.1365-246X.2009.04122.x
21.
21.Ahnaf Usman Zillohu, Nisreen Alissawi, Ramzy Abdelaziz, and Mady Elbahri, Materials 7, 323 (2014).
http://dx.doi.org/10.3390/ma7010323
22.
22.Samaneh Alibeigi and Mohammad Reza Vaezi, Chem. Eng. Technol. 31, 1591 (2008).
http://dx.doi.org/10.1002/ceat.200800093
23.
23.E. Darezereshki, Mater. Lett. 65, 642 (2011).
http://dx.doi.org/10.1016/j.matlet.2010.11.030
24.
24.M. S. Islam, Y. Kusumoto, J. Kurawaki, M. Abdulla-Al-Mamun, and H. Manaka, Bull. Mater. Sci. 3, 1047 (2012).
http://dx.doi.org/10.1007/s12034-012-0414-3
25.
25.Andrzej Skumiel, J. Magn. Magn. Mater. 307, 85 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.03.045
26.
26.Beatriz Sanz, M. Pilar Calatayud, Nicolás Cassinelli, M. Ricardo Ibarra, and Gerardo F. Goya, Eur. Inorg. Chem. 27, 4524 (2015).
http://dx.doi.org/10.1002/ejic.201500303
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943054
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943054
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943054
2016-02-25
2016-10-01

Abstract

To study the magnetic heat behaviors, iron oxide nanoparticles (IONPs) and the polyvinylidene fluoride (PVDF) fibrous mats filled with IONPs were prepared by using coprecipitaion method and the electrospinning technique. The synthesized IONPs exhibited a magnetization of about 72 emu/g with average diameter of about 10 nm. The magnetizations of PVDF fibrous mats filled with IONPs showed 2.6 emu/g, 5.5 emu/g and 9.9 emu/g for 5 wt.%, 10 wt.% and 20 wt.% IONPs concentration, respectively. The heat of the magnetic fibrous mats were measured under various alternating magnetic fields (90, 128, and 167 Oe), frequencies (190, 250 and 355 kHz). The maximum saturated temperature showed up to 62 °C for 20 wt.% IONPs filled in PVDF fibrous mat under 167 Oe and 355 kHz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943054.html;jsessionid=ySeFoYDRcKL23IGNE_XXzPkA.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943054&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943054&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943054'
Right1,Right2,Right3,