Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Ohno, Science 281, 953 (1998).
2.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
3.Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmert, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854 (2001).
4.J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater. 5, 173 (2005).
5.K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Phys. Rev. Lett. 97, 037203 (2006).
6.M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430, 630 (2004).
7.N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B73, 132404 (2006).
8.N. H. Hong, J. H. Song, A. T. Raghavender, T. Asaeda, and M. Kurisu, Appl. Phys. Lett. 99, 052505 (2011).
9.B. Ali, L. R. Shah, C. Ni, J. Q. Xiao, and S. I. Shah, J. Phys.: Condens. Matter 21, 456005 (2009).
10.I. Nakai, M. Sasano, K. Inui, T. Korekawa, H. Ishijima, H. Katoh, Y. J. Li, and M. Kurisu, J. Korean Phys. Soc. 63, 532 (2013).
11.G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A. M. Testa, and A. Amore Bonapasta, Phys. Rev. Lett. 107, 127206 (2011).
12.D. Y. Kim, J. Hong, Y. R. Park, and K. J. Kim, J. Phys.: Condens. Matter 21, 195405 (2009).
13.M. Chandra Dimri, H. Khanduri, H. Kooskora, M. Kodu, R. Jaaniso, I. Heinmaa, A. Mere, J. Krustok, and R. Stern, J. Phys. D: Appl. Phys. 45, 475003 (2012).
14.B. Z. Zhou, W. Zhou, and P. Wu, J. Magn. Magn. Mater. 355, 320 (2014).
15.K. Kikoin and V. Fleurov, Phys. Rev. B74, 174407 (2006).
16.D. J. Priour, Jr., E. H. Hwang, and S. Das Sarma, Phys. Rev. Lett. 92, 117201 (2004).
17.C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, Phys. Rev. B74, 115307 (2006).
18.J. M. D. Coey, Solid State Sciences 7, 660 (2005).
19.T. C. Kaspar, T. Droubay, V. Shutthanandan, S. M. Heald, C. M. Wang, D. E. McCready, S. Thevuthasan, J. D. Bryan, D. R. Gamelin, A. J. Kellock, M. F. Toney, X. Hong, C. H. Ahn, and S. A. Chambers, Phys. Rev. B73, 155327 (2006).
20.L. Zou, X. Xiang, M. Wei, F. Li, and D. G. Evans, Inorg. Chem. 47, 1361 (2008).
21.M. M. Can, G. H. Jaffari, S. Aksoy, S. I. Shah, and T. Fırat, J. Alloys Compd. 549, 303 (2013).
22.S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc. 81, 649 (1998).
23.J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, Appl. Phys. Lett. 82, 2029 (2003).
24.X. L. Duan, D. R. Yuan, L. H. Wang, F. P. Yu, X. F. Cheng, Z. Q. Liu, and S. S. Yan, J. Cryst. Growth 296, 234 (2006).
25.Z. J. Gu, F. Liu, X. F. Li, J. Howe, J. Xu, Y. L. Zhao, and Z. W. Pan, J. Phys. Chem. Lett. 1, 354 (2010).
26.K. E. Sickafus and J. M. Wills, J. Am. Ceram. Soc. 82, 3279 (1999).
27.G. B. Andreozzi, F. Princivalle, H. Skogby, and A. Della Giusta, Am. Min. 85, 1164 (2000).
28.A. Nakatsuka, Y. Ikeda, Y. Yamasaki, N. Nakayama, and T. Mizota, Solid State Commun. 128, 85 (2003).
29.A. S. Risbud, R. Seshadri, J. Ensling, and C. Felser, J. Phys.: Condens. Matter 17, 1003 (2005).
30.M. M. Can, J. Mater. Res. 29, 1062 (2014).
31.E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakata, and N. Ikeda, Nucl. Instrum. Methods Phys. Res. A467-468, 1045 (2001).
32.M. Nomura and A. Koyama, Nucl. Instrum. Methods Phys. Res. A467-468, 733 (2001).
33.T. Uruga, H. Tanida, Y. Yoneda, K. Takeshita, S. Emura, M. Takahashi, M. Harada, Y. Nishihata, Y. Kubozono, T. Tanaka, T. Yamamoto, H. Maeda, O. Kamishima, Y. Takabayashi, Y. Nakata, H. Kimura, S. Goto, and T. Ishikawa, J. Synchrotron Rad. 6, 143 (1999).
34.J. Rodríguez-Carvaja, Physica B192, 55 (1993).
35.D. Shannon, Acta Cryst. A32, 751 (1976).
36.J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B30, 5596 (1984).
37.B. Ravel and M. Newville, J. Synchrotron Rad. 12, 537 (2005).
38.J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

Data & Media loading...


Article metrics loading...



We report magnetism and structure of a diluted magnetic semiconductor Zn[GaCo]O preferentially doped with Co ions in the octahedral site of zinc gallate ZnGaO. Zn[GaCo]O has a small ferromagnetic component superimposed on a large paramagnetic contribution to the magnetization at room temperature, whereas ZnGaO is diamagnetic. The X-raypowderdiffraction confirms that both ZnGaO and Zn[GaCo]O have a normal spinel structure (space group ) without any impurity phases. From X-rayabsorption fine structure measurements we find the following features in Zn[GaCo]O; all of the Co dopants occupy the octahedral site, about half of which are divalent; around the Co cations there exist the oxygen vacancies and the local distortion of shrink in pair distance, while the local structure around Zn and Ga ions coincides with that expected from the X-ray diffraction. These features suggest that the local disorder including oxygen vacancies and distortions only around Co ions plays an important role in stabilizing the ferromagnetic order between some Co ions in Zn[GaCo]O.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd