Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943056
1.
1.X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, and C. G. Lee, Appl. Phys. Lett. 89, 053115 (2006).
http://dx.doi.org/10.1063/1.2236965
2.
2.X. L. Dong, X. Zhang, H. Huang, and F. Zuo, Appl. Phys. Lett. 92, 013127 (2008).
http://dx.doi.org/10.1063/1.2830995
3.
3.X. G. Liu, C. Feng, S. W. Or, Y. P. Sun, C. G. Jin, and W. H. Li, RSC Ad 3, 14590 (2013).
http://dx.doi.org/10.1039/c3ra40937f
4.
4.J. H. Wang, Han Wang, Jingjing Jiang, Wenjie Gong, Da Li, Qiang Zhang, Xinguo Zhao, Song Ma, and Zhidong Zhang, Cryst. Growth Des. 12, 3499 (2012).
http://dx.doi.org/10.1021/cg300198r
5.
5.X. G. Liu, C. Feng, S. W. Or, C. G. Jin, F. Xiao, A. L. Xia, W. H. Li, Y. P. Sun, and S. S. Zhao, Mater. Res. Bull. 48, 3887 (2013).
http://dx.doi.org/10.1016/j.materresbull.2013.05.110
6.
6.X. G. Liu, S. W. Or, C. M. Leung, and S. L. Ho, J. Appl. Phys. 115, 17A507 (2014).
http://dx.doi.org/10.1063/1.4861581
7.
7.X. G. Liu, S. W. Or, S. L. Ho, D. Y. Geng, and Z. G. Xie, J. Alloy. Compd. 509, 9071 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.06.031
8.
8.H. Wang, Y. Y. Dai, W. J. Gong, D. Y. Geng, S. Ma, D. Li, W. Liu, and Z. D. Zhang, Appl. Phys. Lett. 102, 223113 (2013).
http://dx.doi.org/10.1063/1.4809675
9.
9.J. H. Wang, S. W. Or, and C. M. Leung, J. Appl. Phys. 117, 17A505 (2015).
http://dx.doi.org/10.1063/1.4918759
10.
10.L. Z. Wu, J. Ding, H. B. Jiang, C. P. Neo, L. F. Chen, and C. K. Ong, J. Appl. Phys. 99, 083905 (2006).
http://dx.doi.org/10.1063/1.2190719
11.
11.L. Z. Wu, J. Ding, C. P. Neo, L. F. Chen, and C. K. Ong, Phys. Stat. Sol. 204, 755 (2007).
http://dx.doi.org/10.1002/pssa.200622015
12.
12.X. G. Liu, S. W. Or, C. M. Leung, and S. L. Ho, J. Appl. Phys. 113, 17B307 (2013).
13.
13.W. F. Yang, L. Qiao, J. Q. Wei, Z. Q. Zhang, T. Wang, and F. S. Li, J. Appl. Phys. 107, 033913 (2010).
http://dx.doi.org/10.1063/1.3291129
14.
14.V. A. Potakova, V. P. Romanov, N. D. Zerev, O. I. Gromovenko, and E. V. Rubalskaya, Phys. Stat. Sol. 4, 327 (1971).
http://dx.doi.org/10.1002/pssa.2210040206
15.
15.S. Mallegol, C. Brosseau, P. Queffelec, and A. Konn, Phys. Rev. B 68, 174422 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.174422
16.
16.R. F. Soohoo, Microwave Magnetics (Harper & Row, New York, 1985).
17.
17.J. Youssef and C. Brosseau, Phys. Rev. B 74, 214413 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.214413
18.
18.C. Brosseau, S. Mallegol, P. Queffelec, and J. Youssef, Phys. Rev. B 70, 092401 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.092401
19.
19.D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, and P. G. Zerah, J. Appl. Phys. 74, 475 (1993).
http://dx.doi.org/10.1063/1.355256
20.
20.C. Brosseau and P. Talbot, IEEE Trans. Dielec. Electr. Insul. 11, 819 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1349787
21.
21.C. Brosseau and P. Talbot, J. Appl. Phys. 97, 104325 (2005).
http://dx.doi.org/10.1063/1.1915539
22.
22.C. Brosseau, J. Youssef, P. Talbot, and A. Konn, J. Appl. Phys. 93, 9243 (2003).
http://dx.doi.org/10.1063/1.1570935
23.
23.J. J. Jiang, D. Li, D. Y. Geng, J. An, J. He, W. Liu, and Z. D. Zhang, Nanoscale 6, 3967 (2014).
http://dx.doi.org/10.1039/C3NR04087A
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943056
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943056
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943056
2016-02-25
2016-09-26

Abstract

ZnFeO/SiO/PANI (ZSP) core/shell/shell nanostructured disks are prepared and fabricated into paraffin-bonded ZSP composite rings with random, vertical, and horizontal orientations of the easy magnetization planes of the ZSP disks in the paraffin binder in order to study the effect of directional orientation of the easy magnetization planes on their electromagnetic properties. The easy magnetization planes induced by shape anisotropy and oriented by a magnetic field in the vertically oriented ring result in a general enhancement in permeability of 7–60% in the broad UHF–Ku (0.1–18 GHz) bands, while those in the horizontally oriented ring lead to a significant enhancement of 58–1100% in the low-frequency L and S (1–4 GHz) bands, in comparison with the randomly oriented ring. The observed permeability agrees with the theoretical prediction based on the Landau–Lifshitz–Gilbert equation and the Bruggeman’s effective medium theory. The horizontal and vertical arrangements of dipolar polarizations in the vertically and horizontally oriented rings give rise to 3–11% enhancement and weakening in permittivity, respectively, compared to the randomly oriented ring. The enhancement in permeability also improves and broadens the electromagnetic wave absorption in both vertically and horizontally oriented rings, especially in the L and S bands for the horizontally oriented ring.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943056.html;jsessionid=0RXz4d7z4A0hj3UMnfYICzPk.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943056&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943056&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943056'
Right1,Right2,Right3,