Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Donolato, P. Vavassori, M. Gobbi, M. Deryabina, M.F. Hansen, V. Metlushko, B. Ilic, M. Cantoni, D. Petti, S. Brivio, and R. Bertacco, Adv. Mater. 22, 2706 (2010).
2.M. Monticelli, E. Albisetti, D. Petti, D. V Conca, M. Falcone, P.P. Sharma, and R. Bertacco, J. Appl. Phys. 117, 17B317 (2015).
3.L. Ejsing, M.F. Hansen, A.K. Menon, H.A. Ferreira, D.L. Graham, and P.P. Freitas, J. Magn. Magn. Mater. 293, 677 (2005).
4.H. Corte-León, P. Krzysteczko, H.W. Schumacher, A. Manzin, D. Cox, V. Antonov, and O. Kazakova, J. Appl. Phys. 117, 17E313 (2015).
5.T.Q. Hung, S. Oh, J.R. Jeong, and C. Kim, Sensors Actuators, A Phys. 157, 42 (2010).
6.G. Vieira, A. Chen, T. Henighan, J. Lucy, F.Y. Yang, and R. Sooryakumar, Phys. Rev. B 85, 174440 (2012).
7.M. Donolato, M. Gobbi, P. Vavassori, M. Leone, M. Cantoni, V. Metlushko, B. Ilic, M. Zhang, S.X. Wang, and R. Bertacco, Nanotechnology 20, 385501 (2009).
8.P. Vavassori, V. Metlushko, B. Ilic, M. Gobbi, M. Donolato, M. Cantoni, and R. Bertacco, Appl. Phys. Lett. 93, 203502 (2008).
9.P. Vavassori, M. Gobbi, M. Donolato, M. Cantoni, R. Bertacco, V. Metlushko, and B. Ilic, J. Appl. Phys. 107, 09B301 (2010).
10.H. Corte-León, V. Nabaei, A. Manzin, J. Fletcher, P. Krzysteczko, H.W. Schumacher, and O. Kazakova, Sci. Rep. 4, 6045 (2014).
11.F.W. Østerberg, G. Rizzi, A.D. Henriksen, and M.F. Hansen, J. Appl. Phys. 115, 184505 (2014).
12.K. Kim, S.R. Torati, V. Reddy, and S. Yoon, J. Magn. 19, 151 (2014).
13.M. Volmer and M. Avram, J. Magn. Magn. Mater. 381, 481 (2015).
14.B.D. Tu, L.V. Cuong, D.T.H. Giang, T.M. Danh, and N.H. Duc, J. Phys. Conf. Ser. 187, 012056 (2009).
15.H. Kim, V. Reddy, K.W. Kim, I. Jeong, X.H. Hu, and C. Kim, J. Magn. 19, 10 (2014).
16.A. Schuhl, F.N. Van Dau, and J.R. Childress, Appl. Phys. Lett. 66, 2751 (1995).
17.A.D. Henriksen, B.T. Dalslet, D.H. Skieller, K.H. Lee, F. Okkels, and M.F. Hansen, Appl. Phys. Lett. 97, 5 (2010).
18.C.D. Damsgaard, S.C. Freitas, P.P. Freitas, and M.F. Hansen, J. Appl. Phys. 103, 5 (2008).
19.M.S. Gabureac, L. Bernau, G. Boero, and I. Utke, IEEE Trans. Nanotechnol. 12, 668 (2013).
20.Y.C. Chang, C.-R.C. Chang, I. Chang, J.C. Wu, Z.-H. Wei, and M.-F. Lai, J. Appl. Phys. 99, 08B710 (2006).
21.B.T. Dalslet, M. Donolato, and M.F. Hansen, Sensors Actuators A Phys. 174, 1 (2012).
22.M. Donolato, B.T. Dalslet, C.D. Damsgaard, K. Gunnarsson, C.S. Jacobsen, P. Svedlindh, and M.F. Hansen, J. Appl. Phys. 109, 064511 (2011).
23.H. Corte-León, B. Gribkov, P. Krzysteczko, F. Marchi, J.-F. Motte, H.W. Schumacher, V. Antonov, and O. Kazakova, J. Magn. Magn. Mater. 1 (2015), DOI: 10.1016/j.jmmm.2015.07.116.
24.M. Megens, F. de Theije, B. de Boer, and F. van Gaal, J. Appl. Phys. 102, 014507 (2007).
25.Magnequench, January 8, 2009 (2009).
26. Note: Whereas in our previous work [Ref. 23] the moment was estimated from the manufacturer spreadsheet [Ref. 25], in the present manuscript we directly measured the magnetic moment for an array of beads using a SQUID magnetometer. Additionally, while in the previous work we used the bulk value of density for NdFeB, in the present work we provide a more realistic value by using a density in the range given by the manufacturer for the apparent density.
27.O. Bottauscio and A. Manzin, J. Appl. Phys. 115, 17D122 (2014).
28.A. Manzin and O. Bottauscio, IEEE Trans. Magn. 48, 2789 (2012).
29.A. Manzin and O. Bottauscio, J. Appl. Phys. 108, 093917 (2010).
30.T.R. McGuire and R.I. Potter, IEEE Trans. Magn. MAG-11, 1018 (1975).
31.K.J.M. Eijkel and J.H.J. Fluitman, IEEE Trans. Magn. 26, 311 (1990).
32.A. Manzin, V. Nabaei, H. Corte-León, O. Kazakova, P. Krzysteczko, and H.W. Schumacher, IEEE Trans. Magn. 50, 1 (2014).
33.L.K. Bogart and D. Atkinson, Appl. Phys. Lett. 94, 042511 (2009).
34.G. Boero, M. Demierre, P.-. a. Besse, and R.S. Popovic, Sensors Actuators A Phys. 106, 314 (2003).
35.A. Rose, Vision: Human and Electronic (Plenum Press, New York, 1973).
36. Note: We Would like to stress that both cylindrical and conical shapes can be used for the description of the sensing volume. They both are only rough approximations to the real sensing volume. A more accurate description of the sensing volume would require mapping of sensitivity at each scanning height and definition of the detection area in each image according to the Rose criterion. These results would show a sensing volume with a bell-like shape (i.e. close to a cone when the bell is narrow and similar to a cylinder for a wide bell). Based on the large surface area in the present work, we approximate the shape by a cylinder.

Data & Media loading...


Article metrics loading...



Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransportmeasurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd