Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
2.C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
3.Y. Ni, Z. Zhang, I. C. Nlebedim, R. L. Hadimani, G. Tuttle, and D. C. Jiles, J.Appl. Phys. 117, 17C748 (2015).
4.J. E. Moore, Nature 464, 194 (2010).
5.Y. Ni, Z. Zhang, I. C. Nlebedim, R. L. Hadimani, and D. C. Jiles, IEEE Trans. Mag. 51, 1 (2015).
6.D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010).
7.H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
8.L. Plucinski, G. Mussler, J. Krumrain, A. Herdt, S. Suga, D. Grützmacher, and C. M. Schneider, Appl. Phys. Lett. 98, 222503 (2011).
9.J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, and Y. Wang, Nat. Commun. 2, 574 (2011).
10.K. Wang, Y. Liu, W. Wang, N. Meyer, L. H. Bao, L. He, M. R. Lang, Z. G. Chen, X. Y. Che, K. Post, J. Zou, D. N. Basov, K. L. Wang, and F. Xiu, Appl. Phys. Lett. 103, 031605 (2013).
11.H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z.-X. Shen, and Z. Liu, Nat. Chem. 4, 281 (2012).
12.Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K. Lazarov, and L. Li, Nat. Phys. 10, 294 (2014).
13.C. Zhang, X. Yuan, K. Wang, Z.-G. Chen, B. Cao, W. Wang, Y. Liu, J. Zou, and F. Xiu, Adv. Mater. 26, 7110 (2014).
14.L. Bao, W. Wang, N. Meyer, Y. Liu, C. Zhang, K. Wang, P. Ai, and F. Xiu, Sci. Rep. 3, 2391 (2013).
15.S. Shimizu, R. Yoshimi, T. Hatano, K. S. Takahashi, A. Tsukazaki, M. Kawasaki, Y. Iwasa, and Y. Tokura, Phys. Rev. B 86, 045319 (2012).
16.H. Pal, V. Yudson, and D. Maslov, Phys. Rev. B 85, 085439 (2012).
17.S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
18.H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 233101 (2011).
19.B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).
20.A. A. Taskin and Y. Ando, Phys. Rev. B 80, 085303 (2009).
21.M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, P. D. King, and P. Hofmann, Nat. commun. 1, 128 (2010).

Data & Media loading...


Article metrics loading...



We deposited high quality (SbBi)Te on mica substrate by molecular beam epitaxy and investigated their magnetotransport properties. It is found that the average surface roughness of thin films is lower than 2 nm. Moreover, a local maxima on the sheet resistance is obtained with x = 0.043, indicating a minimization of bulk conductivity at this composition. For (SbBi)Te, weak antilocalization with coefficient of -0.43 is observed, confirming the existence of 2D surface states. Moreover Shubnikov-de Hass oscillation behavior occurs under high magnetic field. The 2D carrier density is then determined as 0.81 × 1016 m−2, which is lower than that of most TIs reported previously, indicating that (SbBi)Te is close to ideal TI composition of which the Dirac point and Fermi surface cross within the bulk bandgap. Our results thus demonstrate the best estimated composition for ideal TI is close to (SbBi)Te and will be helpful for designing TI-based devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd