Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Brumfiel, Nature 466, 310 (2010).
2.M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
3.C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. Lett. 101, 146802 (2008).
4.L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 1 (2007).
5.Y.L. Chen, J. Chu, J.G. Analytis, Z.K. Liu, K. Igarashi, H. Kuo, X.L. Qi, S.K. Mo, R.G. Moore, D.H. Lu, M. Hashimoto, T. Sasagawa, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.X. Shen, 329, 659 (2010).
6.L.A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y.S. Hor, R.J. Cava, A. Bansil, H. Lin, and M.Z. Hasan, Nat. Phys. 7, 32 (2010).
7.C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).
8.I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
9.T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. B 81, 121401 (2010).
10.Y.Q. Zhang, N.Y. Sun, W.R. Che, X.L. Li, J.W. Zhang, R. Shan, Z.G. Zhu, and G. Su, Appl. Phys. Lett. 107, 082404 (2015).
11.J. Dyck, Č Drašar, P. Lošt’ák, and C. Uher, Phys. Rev. B 71, 115214 (2005).
12.Z. Zeng, T. a. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J.S. Lee, J. Wang, Z.M. Wang, S. Yu, M.E. Hawkridge, M. Benamara, and G.J. Salamo, AIP Adv. 3, 0 (2013).
13.J. Dyck, P. Hájek, P. Lošt’ák, and C. Uher, Phys. Rev. B 65, 115212 (2002).
14.Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L. a. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M.Z. Hasan, N.P. Ong, a. Yazdani, and R.J. Cava, Phys. Rev. B 81, 195203 (2010).
15.P.S. V.A. Kulbachinskii, A.Yu. Kaminskiia, K. Kindo, Y. Narumib, K. Sugab, and P. Lostak, Phys. B Condens. Matter 311, 292 (2002).
16.P.P.J. Haazen, J.-B. Laloë, T.J. Nummy, H.J.M. Swagten, P. Jarillo-Herrero, D. Heiman, and J.S. Moodera, Appl. Phys. Lett. 100, 082404 (2012).
17.L.J. Collins-McIntyre, M.D. Watson, a. a. Baker, S.L. Zhang, a. I. Coldea, S.E. Harrison, a. Pushp, a. J. Kellock, S.S.P. Parkin, G. van der Laan, and T. Hesjedal, AIP Adv. 4, 127136 (2014).
18.W. Liu, D. West, L. He, Y. Xu, J. Liu, K. Wang, and Y. Wang, ACS Nano 9, 10237 (2015).
19.Y.R. Song, F. Yang, M.-Y. Yao, F. Zhu, L. Miao, J.-P. Xu, M.-X. Wang, H. Li, X. Yao, F. Ji, S. Qiao, Z. Sun, G.B. Zhang, B. Gao, C. Liu, D. Qian, C.L. Gao, and J.-F. Jia, Appl. Phys. Lett. 100, 242403 (2012).
20.T. Chen, W. Liu, F. Zheng, M. Gao, X. Pan, G. Van Der Laan, X. Wang, Q. Zhang, F. Song, B. Wang, and B. Wang, Adv. Mater. (2015), DOI:10.1002/adma.201501254.
21.S.E. Harrison, L.J. Collins-McIntyre, S.-L. Zhang, A.A. Baker, A.I. Figueroa, A.J. Kellock, A. Pushp, S.S.P. Parkin, J.S. Harris, G. van der Laan, and T. Hesjedal, J. Phys. Condens. Matter 27, 245602 (2015).
22.W. Luo and X.-L. Qi, Phys. Rev. B 87, 085431 (2013).
23.S. V. Eremeev, V.N. Men’shov, V. V. Tugushev, P.M. Echenique, and E. V. Chulkov, Phys. Rev. B 88, 144430 (2013).
24.V. Men’shov, V. Tugushev, S. Eremeev, P. Echenique, and E. Chulkov, Phys. Rev. B 88, 224401 (2013).
25.A. Kandala, A. Richardella, D.W. Rench, D.M. Zhang, T.C. Flanagan, and N. Samarth, Appl. Phys. Lett. 103, 202409 (2013).
26.Q.I. Yang, M. Dolev, L. Zhang, J. Zhao, A.D. Fried, E. Schemm, M. Liu, A. Palevski, A.F. Marshall, S.H. Risbud, and A. Kapitulnik, Phys. Rev. B 88, 081407 (2013).
27.P. Wei, F. Katmis, B. a. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J.S. Moodera, Phys. Rev. Lett. 110, 186807 (2013).
28.L.A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y.S. Hor, R.J. Cava, A. Bansil, H. Lin, and M.Z. Hasan, Nat. Phys. 7, 32 (2010).
29.J. Li, Z.Y. Wang, A. Tan, P. -a. Glans, E. Arenholz, C. Hwang, J. Shi, and Z.Q. Qiu, Phys. Rev. B 86, 054430 (2012).
30.D. West, Y.Y. Sun, S.B. Zhang, T. Zhang, X. Ma, P. Cheng, Y.Y. Zhang, X. Chen, J.F. Jia, and Q.K. Xue, Phys. Rev. B 85, 081305 (2012).
31.I. Vobornik, U. Manju, J. Fujii, F. Borgatti, P. Torelli, D. Krizmancic, Y.S. Hor, R.J. Cava, and G. Panaccione, Nano Lett. 11, 4079 (2011).
32.W. Liu, L. He, Y. Xu, K. Murata, M.C. Onbasli, M. Lang, N.J. Maltby, S. Li, X. Wang, C. A. Ross, P. Bencok, G. van der Laan, R. Zhang, and K.L. Wang, Nano Lett. 15, 764 (2015).
33.X. Zhou, L. Ma, Z. Shi, G.Y. Guo, J. Hu, R.Q. Wu, and S.M. Zhou, Appl. Phys. Lett. 105, 012408 (2014).
34.Y. Lu, Y. Choi, C. Ortega, and X. Cheng, Phys. Rev. Lett. 147207, 1 (2013).
35.Z. Yang and V. V. Moshchalkov, J. Appl. Phys. 109, 083908 (2011).
36.S.H. Nie, Y.Y. Chin, W.Q. Liu, J.C. Tung, J. Lu, H.J. Lin, G.Y. Guo, K.K. Meng, L. Chen, L.J. Zhu, D. Pan, C.T. Chen, Y.B. Xu, W.S. Yan, and J.H. Zhao, Phys. Rev. Lett. 111, 027203 (2013).
37.G. van der Laan and A.I. Figueroa, Coord. Chem. Rev. 277–278, 95 (2014).
38.W.Q. Liu, Y.B. Xu, P.K.J. Wong, N.J. Maltby, S.P. Li, X.F. Wang, J. Du, B. You, J. Wu, P. Bencok, and R. Zhang, Appl. Phys. Lett. 104, 142407 (2014).
39.W.Q. Liu, M.Y. Song, N.J. Maltby, S.P. Li, J.G. Lin, M.G. Samant, S.S.P. Parkin, P. Bencok, P. Steadman, A. Dobrynin, Y.B. Xu, R. Zhang, D.L. Source, and D. Ox, J. Appl. Phys. 117, 17E121 (2015).
40.W.Q. Liu, W.Y. Wang, J.J. Wang, F.Q. Wang, C. Lu, F. Jin, a. Zhang, Q.M. Zhang, G. Van Der Laan, Y.B. Xu, Q.X. Li, and R. Zhang, Sci. Rep. 5, 11911 (2015).
41.T. Goto, M.C. Onbaşlı, and C. A. Ross, Opt. Express 20, 28507 (2012).
42.Y. Sun, Y.-Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider, M. Wu, H. Schultheiss, and A. Hoffmann, Appl. Phys. Lett. 101, 152405 (2012).
43.M. Lang, M. Montazeri, M.C. Onbasli, X. Kou, Y. Fan, P. Upadhyaya, K. Yao, F. Liu, Y. Jiang, W. Jiang, K.L. Wong, G. Yu, J. Tang, T. Nie, L. He, R.N. Schwartz, Y. Wang, C. a Ross, and K.L. Wang, Nano Lett. 14, 34593465 (2014).
44.N. Nagaosa, J. Sinova, S. Onoda, a. H. MacDonald, and N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
45.M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. Lett. 108, 036805 (2012).
46.A. Kimura, J. Matsuno, J. Okabayashi, a. Fujimori, T. Shishidou, E. Kulatov, and T. Kanomata, Phys. Rev. B 63, 224420 (2001).
47.M. MIZUMAKI, A. AGUI, Y. SAITOH, M. NAKAZAWA, T. MATSUSHITA, and A. KOTANI, Surf. Rev. Lett. 09, 849 (2002).
48.I. Vobornik et al., Nano Lett. 11, 4079 (2011).

Data & Media loading...


Article metrics loading...



One of the major obstacles of the magnetic topological insulators (TIs) impeding their practical use is the low Curie temperature (). Very recently, we have demonstrated the enhancement of the magnetic ordering in Cr-doped BiSe by means of proximity to the high-ferrimagneticinsulator (FMI) YFeO and found a large and rapidly decreasing penetration depth of the proximity effect, suggestive of a different carrier propagation process near the TI surface. Here we further present a study of the interfacial magnetic interaction of this TI/FMI heterostrucutre. The synchrotron-based X-ray magnetic circular dichroism (XMCD) technique was used to probe the nature of the exchange coupling of the BiCrSe/YFeO interface. We found that the BiCrSegrown on YFeO(111) predominately contains Cr3+ cations, and the spin direction of the Cr3+ is aligned parallel to that of tetrahedral Fe3+ of the YIG, revealing a ferromagnetic exchange coupling between the BiCrSe and the YFeO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd