Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Nehra, V. D. Sudheesh, N. Lakshmi, and K. Venugopalan, “Structural, electronic and magnetic properties of quaternary half-metallic Heusler alloy CoFeCrAl,” Phys. Status Solidi RRL 7, 289-292 (2013).
2.G. Y. Gao, Lei Hu, K. L. Yao, Bo Luo, and N. Liu, “Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study,” J. Alloys Compd. 551, 539543 (2013).
3.G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” Europhys. Lett. 102, 17007-1-6 (2013).
4.P. Kharel, W. Zhang, R. Skomski, S. Valloppilly, Y. Huh, R. Fuglsby, S Gilbert, and D. J. Sellmyer, “Magnetism, electron transport and effect of disorder in CoFeCrAl,” J. Phys. D: Appl. Phys. 48, 245002 (2015).
5.L. Bainsla, A. I. Mallick, A. A. Coelho, A. K. Nigam, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, Aftab Alam, K. G. Suresh, and K. Hono, “High spin polarization and large spin splitting in equiatomic quaternary CoFeCrAl Heusler alloy,” J. Magn. Magn. Mater. 394, 82-86 (2015).
6.S. Ouardi, G. Fecher, C. Felser, and J. Kübler, “Realization of Spin Gapless Semiconductors: The Heusler Compound Mn2CoAl,” Phys. Rev. Let. 110, 100401 (2013).
7.H. Luo, H. Liu, X. Yu, Y. Li, W. Zhu, G. Wu, X. Zhu, Ch. Jiang, and H. Xu, “Effect of Fe substitution on the magnetic properties of half-Heusler alloy CoCrAl,” J. Magn. Magn. Mater. 321, 1321-1324 (2009).
8.B. A. Alhaj and B. Hamad, “Electronic and magnetic properties of Co2-xFexCrAl alloys: Ab initio calculations,” Phys. Stat. Sol. B 251, 184189 (2014).
9.J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B 54, 16533-16539 (1996).
10.G. Kresse and D. Joubert, “From ultrasoft pseudo potentials to projector augmented-wave method,” Phys. Rev. B 59, 17581775 (1999).
11.Ph. J. Hasnip, Ch. H. Loach, J. H. Smith, M. I. J. Probert, D. Gilks, J. Sizeland, L. Lari, J. Sagar, K. Yoshida, M. Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt-Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7, 1473-1482 (2014).
12.J. Dubowik, I. Gościańska, Y. V. Kudryavtsev, and V. A. Oksenenko, “Structure and magnetism of Co2CrAl Heusler alloy films,” Mater. Sci-Poland 25, 1281-1287 (2007).
13.K. Özdoǧan, E. Şaşıoǧlu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors,” J. Appl. Phys. 113, 193903 (2013).

Data & Media loading...


Article metrics loading...



Disordered CoFeCrAl and CoFeCrSiAl alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSiAl is predicted to increase from 2.01 to 2.50 per formula unit, in good agreement with experiment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd