Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Dzyaloshinsky, Phys. Chem. Solids 4, 241 (1958).
2.T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
3.F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010).
4.S. Mühlbauer, B. Binz, F. Jonietz, C. Peiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
5.W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Peiderer, Phys. Rev. B 81, 041203 (2010).
6.X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y Matsui, N. Nagaosa, and Y Tokura, Nature (London) 465, 901 (2010).
7.X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2010).
8.A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).
9.M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. Lett. 102, 186601 (2009).
10.N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).
11.S. X. Huang and C. L. Chien, Phys. Rev. Lett. 108, 267201 (2012).
12.Y. Tokunaga, X.Z. Yu, J.S. White, H.M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638 (2015).
13.M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007).
14.G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N’Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Phys. Rev. Lett. 110, 177204 (2013).
15.G. Chen, T. P. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Z. Wu, and A. K. Schmid, Nat. Commun. 4, 2671 (2013).
16.A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, Europhys. Lett. 100, 57002 (2012).
17.K. S. Ryu, L. Thomas, S. H. Yang, and S. S. Parkin, Nat. Nanotech. 8, 527 (2013).
18.S. Emori, U. Bauer, S.-M. M. Ahn, E. Martinez, and G. S. Beach, Nat. Mater. 12, 611 (2013).
19.J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotech. 8, 839844 (2013).
20.W. J. Jiang, P. Upadhyaya, W. Zhang, G. Q. Yu, B. M. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. GE. te. Velthuis, and A. Hoffmann, Science 349, 6245 (2015).
21.S. Woo, K. Litzius, B. Krüger, M. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. Reeve, M. Weigand, P. Agrawal, P. Fischer, M. Kläui, and G. S. D. Beach, arXiv:1502.07853 [cond-mat.mtrl-sci] (2015).
22.K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. WohlhWohl, J.-M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, arXiv:1502.07376 [cond-mat.mtrl-sci] (2015).
23.G. Chen, A. T. N’Diaye, Y. Z. Wu, and A. K. Schmid, Appl. Phy. Lett. 106, 062402 (2015).
24.J. X. Li, M. W. Jia, Z. Ding, J. H. Liang, Y. M. Luo, and Y. Z. Wu, Phys. Rev. B 90, 214415 (2014).
25.R. Mattheis and G. Quednau, J. Magn. Magn. Mater. 205, 143 (1999).
26.G. Chen, J. Li, F. Z. Liu, J. Zhu, Y. He, J. Wu, Z. Q. Qiu, and Y. Z. Wu, J. Appl. Phys. 108, 073905 (2010).
27.G. Chen, J. Zhu, J. Li, F. Z. Liu, and Y. Z. Wu, Appl. Phys. Lett. 98, 132505 (2011).
28.R. Stamps, L. Louail, M. Hehn, M. Gester, and K. Ounadjela, J. Appl. Phys. 81, 4751 (1997).
29.J. H. Liang, J. Z. Cao, J. X. Li, and Y. Z. Wu, J. Appl. Phys. 117, 17E129 (2015).
30.M. Kisielewski, A. Maziewski, M. Tekielak, J. Ferréb, S. Lemerle, V. Mathet, and C. Chappert, J. Magn. Magn. Mater. 260, 231 (2003).
31.L. Louail, K. Ounadjela, and R.L. Stamps, J. Magn. Magn. Mater. 167, L189 (1997).
32.R. Frömter, H. Stillrich, C. Menk, and H. P. Oepen, Phys. Rev. Lett. 100, 207202 (2008).
33.H. Stillrich, C. Menk, R. Frömter, and H. P. Oepen, J. Appl. Phys. 105, 07C308 (2009).
34.Y. Yafet and E.M. Gyorgy, Phys. Rev. B 38, 9145 (1988).
35.H. P. Oepen, M. Speckmann, Y. Millev, and J. Kirschner, Phys. Rev. B 55, 2753 (1997).
36.A. Kashuba and V. L. Pokrovsky, Phy. Rev. Lett. 70, 3155 (1993).
37.Y. Z. Wu, C. Won, A. Scholl, A. Doran, H.W. Zhao, X. F. Jin, and Z.Q. Qiu, Phys. Rev. Lett. 93, 117205 (2004).
38.J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Phys. Rev. B 70, 224434 (2004).
39.R. K. Dumas, C.-P. Li, I. V. Roshchin, I. K. Schuller, and K. Liu, Phys.Rev. B 75, 134405 (2007).
40.A. Stancu, C. Pike, L. Stoleriu, P. Postolache, and D. Cimpoesu, J. Appl. Phys. 93, 6620 (2003).

Data & Media loading...


Article metrics loading...



The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t)/Cu]film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversal process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd