Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943535
1.
1.O. A. Ivanov, L. V. Solina, V. A. Demshina, and L. M. Magat, Phys. Met. Metallogr. 35, 81 (1973).
2.
2.H. Kanazawa, G. Lauhoff, and T. Suzuki, J. Appl. Phys. 87, 6143 (2000).
http://dx.doi.org/10.1063/1.372636
3.
3.D. Weller, A. Moser, L. Folks, M. E. Best, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
http://dx.doi.org/10.1109/20.824418
4.
4.J. B. Staunton, S. Ostanin, S. S. a Razee, B. Gyorffy, L. Szunyogh, B. Ginatempo, and E. Bruno, J. Phys.: Condens. Matter. 16, S5623 (2004).
http://dx.doi.org/10.1088/0953-8984/16/48/019
5.
5.Y. Kota and A. Sakuma, J. Phys. Soc. Jpn. 81, 084705 (2012).
http://dx.doi.org/10.1143/JPSJ.81.084705
6.
6.S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada, and K. Fukamichi, Phys. Rev. B 66, 024413 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024413
7.
7.A. Hotta, T. Ono, M. Hatayama, K. Tsumura, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu, J. Appl. Phys. 115, 17B712 (2014).
http://dx.doi.org/10.1063/1.4862840
8.
8.T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, and K. Hono, Appl. Phys. Lett. 82, 2461 (2003).
http://dx.doi.org/10.1063/1.1567053
9.
9.K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, a. J. Kellock, and J.-U. Thiele, J. Appl. Phys. 98, 033904 (2005).
http://dx.doi.org/10.1063/1.1991968
10.
10.A. Hotta, T. Ono, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu, 13th Joint MMM-Intermag Conference, FV-05 (2016).
11.
11.T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J. Akiyama, Appl. Phys. Lett. 80 2147 (2002).
http://dx.doi.org/10.1063/1.1463213
12.
12.D. C. Berry and K. Barmak, J. Appl. Phys. 102, 024912 (2007).
http://dx.doi.org/10.1063/1.2756631
13.
13.B. Wang and K. Barmak, J. Appl. Phys. 109, 123916 (2011).
http://dx.doi.org/10.1063/1.3592980
14.
14.J. Ikemoto, Y. Imai, and S. Nakagawa, IEEE Trans. Magn. 44, 3543 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001610
15.
15.D. A. Gilbert, L.-W. Wang, T. J. Klemmer, J.-U. Thiele, C.-H. Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
http://dx.doi.org/10.1063/1.4799651
16.
16.B. M. H. Kryder, E. C. Gage, T. W. Mcdaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y. Hsia, and M. F. Erden, Proc. IEEE 96, 1810 (2008).
http://dx.doi.org/10.1109/JPROC.2008.2004315
17.
17.G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P.-W. Huang, K. Wang, X. Chen, C. Peng, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J.-U. Thiele, IEEE Trans. Magn. 51, 3201709 (2015).
18.
18.I. L. Prejbeanu, M. Kerekes, R. C. Sousa, H. Sibuet, O. Redon, B. Dieny, and J. P. Nozires, J. Phys.: Condens. Matter. 19, 165218 (2007).
http://dx.doi.org/10.1088/0953-8984/19/16/165218
19.
19.J. C. A. Huang, Y. C. Chang, C. C. Yu, Y. D. Yao, Y. M. Hu, and C. M. Fu, J. Appl. Phys. 93, 8173 (2003).
http://dx.doi.org/10.1063/1.1540161
20.
20.G. Meyer and J.-U. Thiele, Phys. Rev. B 73, 214438 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214438
21.
21.D. B. Xu, J. S. Chen, T. J. Zhou, and G. M. Chow, J. Appl. Phys. 109, 2009 (2011).
22.
22.J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).
http://dx.doi.org/10.1063/1.1470254
23.
23.M. L. Yan, Y. F. Xu, X. Z. Li, and D. J. Sellmyer, J. Appl. Phys. 97, 10H309 (2005).
24.
24.T. Kai, T. Maeda, A. Kikitsu, J. Akiyama, T. Nagase, and T. Kishi, J. Appl. Phys. 95, 609 (2004).
http://dx.doi.org/10.1063/1.1635978
25.
25.T. Moriya, H. Nakata, K. Komiyama, S. Okamoto, N. Kikuchi, O. Kitakami, and T. Shimatsu, 58th Conference on Magn. Magn. Mater. (MMM), BT-05 (2013).
26.
26.T. Suzuki, H. Kanazawa, and A. Sakuma, IEEE Trans. Magn. 38, 2794 (2002).
http://dx.doi.org/10.1109/TMAG.2002.803103
27.
27.C. J. Aas, L. Szunyogh, and R. W. Chantrell, EPL (Europhysics Lett.) 102, 57004 (2013).
http://dx.doi.org/10.1209/0295-5075/102/57004
28.
28.Y. Kota and A. Sakuma, J. Phys. Soc. Jpn. 83, 034715 (2014).
http://dx.doi.org/10.7566/JPSJ.83.034715
29.
29.A. Sakuma, J. Phys. Soc. Jpn. 63, 3053 (1994).
http://dx.doi.org/10.1143/JPSJ.63.3053
30.
30.R. Cuadrado, T. J. Klemmer, and R. W. Chantrell, Appl. Phys. Lett. 105, 152406 (2014).
http://dx.doi.org/10.1063/1.4898574
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943535
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943535
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943535
2016-03-03
2016-09-27

Abstract

In 1 (fct)-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt- ( = Mn, Ni, Cu) thin films grown epitaxially on MgO(001) substrates at a substrate temperature of 350  °C by changing Fe, Pt, and contents, and explored the effects of off-stoichiometry and 3-metal-substitution. The magnetic moment per atom () of FePt-films as a function of the effective number of valence electrons () in 3metal sites follows the Slater-Pauling-type trend, by which decreases by the deviation from = 8, independently of the metal and the Pt concentration. The magnetic anisotropy () exhibits dependence similar to . This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-films, but it was clarified as robust against off-stoichiometry. The compensated () of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943535.html;jsessionid=_nJ7COO9eP4qhlNFunlGPhDS.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943535&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943535&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943535'
Right1,Right2,Right3,