Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943537
1.
1.I. Dubenko, T. Samanta, A. Kumar Pathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov, and N. Ali, J. Magn. Mag. Mat. 324, 3530 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.02.082
2.
2.E Liu, W. Wang, L. Feng, W. Zhu, G. Li, J. Chen, H. Zhang, G. Wu, C. Jiang, H. Xu, and F. de Boer, Nature Comm. 3, 873 (2012).
http://dx.doi.org/10.1038/ncomms1868
3.
3.C. H. Yu, L. Q. Meng, J. L. Chen, F. M. Yang, S. R. Qi, W. S. Zhan, Z. Wang, Y. F. Zheng, and L. C. Zhao, Appl. Phys. Lett. 75, 2990 (1999).
http://dx.doi.org/10.1063/1.125211
4.
4.R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito1, S. Okamoto, O. Kitakami, K. Oikawa1, A. Fujita1, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).
http://dx.doi.org/10.1038/nature04493
5.
5.M. Khan, I. Dubenko, S. Stadler, and N. Ali, J. Phys.: Condens. Matter 20, 235204 (2008).
http://dx.doi.org/10.1088/0953-8984/20/23/235204
6.
6.A. K. Pathak, I. Dubenko, Y. Xiong, P. W. Adams, S. Stadler, and N. Ali, IEEE Trans. Mag. 46, 1444 (2010).
http://dx.doi.org/10.1109/TMAG.2010.2043924
7.
7.I. Dubenko, A. K. Pathak, S. Stadler, N. Ali, Ya. Kovarskii, V. N. Prudnikov, N. S. Perov, and A. B. Granovsky, Phys. Rev. B 80, 092408 (2009) (Brief Report).
http://dx.doi.org/10.1103/PhysRevB.80.092408
8.
8.T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys,” Nat. Mater. 4, 450 (2005).
http://dx.doi.org/10.1038/nmat1395
9.
9.A. K. Pathak, M. Khan, I. Dubenko, S. Stadler, and N. Ali, Appl. Phys. Lett. 90, 262504 (2007).
http://dx.doi.org/10.1063/1.2752720
10.
10.I. Dubenko, M. Khan, A. K. Pathak, B. R. Gautam, S. Stadler, and N. Ali, J. Magn. Magn. Mat. 321, 754 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.11.043
11.
11.S. Chatterjee, V.R. Singh, A.K. Deb, S. Giri, S.K. De, I. Dasgupta, and S. Majumdar, J.Magn. Magn. Mater. 322, 102107 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.08.040
12.
12.T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, and A. Planes, Phys. Rev B. 73, 174413-1174413-10 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.174413
13.
13.K. Koyama, T. Igarashi, and H. Okada, J. Magn. Magn. Mater. 310, e994 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.1040
14.
14.M. Ye, A. Kimura, Y. Miura et al., Phys. Rev. Lett. 104, 176401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.176401
15.
15.J. Dubowik, Y. Kudryavtsev, Y.P. Lee, N.N. Lee, and B. S. Hong, Mol. Phys. Rep. 40, 55 (2004).
16.
16.M. Kurfi, B. Schultz, R. Anton, G. Meier, L. Sawilski, and J. Kotzler, J. Magn. Magn.Mater. 290–291, 591 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.11.272
17.
17.B. Bohse, A. Zolotaryov, W. Kreuzpaintner, D. Lott, A. Kornowski, A. Stemmann, Ch. Heyn, and W. Hansen, J. Cryst. Gr. 323, 368 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.031
18.
18.R. Niemann, O. Heczko, L. Schultz, and S. Fähler, Appl. Phys. Lett. 97, 222507 (2010).
http://dx.doi.org/10.1063/1.3517443
19.
19.A. Grunin, A. Goikhman, and V. Rodionova, Solid State Phenomena 190, 311 (2012).
http://dx.doi.org/10.4028/www.scientific.net/SSP.190.311
20.
20.A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, and K. Ullakko, Appl. Phys. A 79, 1505 (2004).
http://dx.doi.org/10.1007/s00339-004-2831-7
21.
21.R. Niemann, L. Schultz, and S. Fähler, J. Appl. Phys. 111, 093909 (2012).
http://dx.doi.org/10.1063/1.4712310
22.
22.Harish Sharma Akkera, Inderdeep Singh, and Davinder Kaur, Journal of Alloys and Compounds 642, 53 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.03.261
23.
23.A. Sokolov, Le Zhang, I. Dubenko, T. Samanta, S. Stadler, and N. Ali, Appl. Phys. Lett. 102, 072407 (2013).
http://dx.doi.org/10.1063/1.4793421
24.
24.S. Granovsky, I. Gaidukova, A. Sokolov, A. Devishvili, and V. Snegirev, Solid State Phenomena 233-234, 666 (2015).
http://dx.doi.org/10.4028/www.scientific.net/SSP.233-234.666
25.
25.T. Krenke, M. Acet, E.- F. Wassermann, X. Moya, L. Mañosa, and Antoni Planes, Phys. Rev. B 72, 014412 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014412
26.
26.V. N. Prudnikov, A. P. Kazakov, I. S. Titov, N. S. Perov, A. B. Granovskii, I. S. Dubenko, A. K. Pathak, N. Ali, A. P. Zhukov, and J. Gonzalez, JETP Letters 92(10), 666 (2010).
http://dx.doi.org/10.1134/S0021364010220066
27.
27.Mooji J H, Phys. Status Solidi a 17, 521 (1973).
http://dx.doi.org/10.1002/pssa.2210170217
28.
28.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943537
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943537
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943537
2016-03-03
2016-10-01

Abstract

The effect of substrates on the magnetic and transport properties of NiMnIn ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in NiMnInfilmsgrown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of NiMnInfilm have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943537.html;jsessionid=L7mAzz9dyutHXADNvB6svJCb.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943537&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943537&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943537'
Right1,Right2,Right3,