Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943604
1.
1.C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
http://dx.doi.org/10.1103/RevModPhys.36.31
2.
2.I. D. Mayergoyz et al., J. Appl. Phys. 67, 5466 (1990).
http://dx.doi.org/10.1063/1.345847
3.
3.I. D. Mayergoyz, J. Appl. Phys. 79, 6473 (1996).
http://dx.doi.org/10.1063/1.361976
4.
4.N. Duan et al., J. Appl. Phys. 117, 17A718 (2015).
http://dx.doi.org/10.1063/1.4914124
5.
5.T. Matsushita, Cryogenics 30, 314 (1990).
http://dx.doi.org/10.1016/0011-2275(90)90309-Z
6.
6.F. Sumiyoshi et al., Jpn. J. Appl. Phys. 25, L148 (1986).
http://dx.doi.org/10.1143/JJAP.25.L148
7.
7.E. Otabe et al., IEEE Trans. Appl. Supercon. 9, 2569 (1999).
http://dx.doi.org/10.1109/77.785011
8.
8.T. Matsushita et al., Physica C 182, 95 (1991).
http://dx.doi.org/10.1016/0921-4534(91)90462-8
9.
9.E. Otabe et al., Jpn. J. Appl. Phys. 37, L382 (1998).
http://dx.doi.org/10.1143/JJAP.37.L382
10.
10.F. Vajda et al., IEEE Trans. Magn. 29, 1532 (1993).
http://dx.doi.org/10.1109/20.250695
11.
11.I. D. Mayergoyz, Mathematical Models of Hysteresis and their Applications (Academic Press, Massachusetts, 2003).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943604
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943604
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943604
2016-03-04
2016-09-30

Abstract

Even though Isaak Mayergoyz described it as: “much more accurate for the description of superconductinghysteresis than for the description of hysteresis of magnetic materials”, Preisach modeling of superconductinghysteresis is not a popular investigative tool. This might be due to the complexity of identifying the Preisach distribution function or due to lack of convincing physical reasoning behind pure phenomenological versions. In this paper, a two-component Preisach-type model is presented which is computationally-efficient and physically-sound. The change in the slope of the minor hysteresis loops is incorporated in the model and is attributed to reversible fluxoid motion. The model presented is clearly capable of simulating various shapes of superconductinghysteresis loops and could be easily coupled with finite element method (FEM) numerical software.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943604.html;jsessionid=GakZrtq3An9agVyTfr61cmWU.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943604&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943604&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943604'
Right1,Right2,Right3,