Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943605
1.
1.R.A. Griffiths, A. Williams, C. Oakland, J. Roberts, A. Vijayaraghavan, and T. Thomson, J. Phys. D: Appl. Phys. 46, 503001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/50/503001
2.
2.S.A. Majetich, T. Wen, and O.T. Mefford, MRS Bull. 38, 899 (2013).
http://dx.doi.org/10.1557/mrs.2013.230
3.
3.Z. Li, W. Zhang, and K.M. Krishnan, AIP Advances 5, 087165 (2015).
http://dx.doi.org/10.1063/1.4929578
4.
4.G. Chen, M.I. Bodnarchuk, M.V. Kovalenko, G. Springholz, W. Heiss, W. Jantsch, E. Platzgummer, H. Loeschner, and J. Schotter, Adv. Mater. 22, 1364 (2010).
http://dx.doi.org/10.1002/adma.200902884
5.
5.M. Albrecht, G. Hu, I.L. Guhr, T.C. Ulbrich, J. Boneberg, P. Leiderer, and G. Schatz, Nat Mater. 4, 203 (2005).
http://dx.doi.org/10.1038/nmat1324
6.
6.V. Sundar, J. Zhu, D.E. Laughlin, and J.-G. Zhu, Nano Lett. 14, 1609 (2014).
http://dx.doi.org/10.1021/nl500061t
7.
7.T. Wen and S.A. Majetich, ACS Nano 5, 8868 (2011).
http://dx.doi.org/10.1021/nn2037048
8.
8.C.R. Hogg, S.A. Majetich, and J.A. Bain, IEEE Trans Mag. 46, 2307 (2010).
http://dx.doi.org/10.1109/TMAG.2010.2040145
9.
9.T. Wen, R.A. Booth, and S.A. Majetich, Nano Lett. 12, 5873 (2012).
http://dx.doi.org/10.1021/nl3032372
10.
10.W.W. Yu, J.C. Falkner, C.T. Yavuz, and V.L. Colvin, Chemical Communications 20, 2306 (2004).
http://dx.doi.org/10.1039/b409601k
11.
11.F. Kurth, M. Weisheit, K. Leistner, T. Gemming, B. Holzapfel, L. Schultz, and S. Fähler, Phys. Rev. B 82, 184404 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.184404
12.
12.M. Albrecht and C. Brombacher, Physica Status Solidi (a) 210, 1272 (2013).
http://dx.doi.org/10.1002/pssa.201228718
13.
13.W.D. Harkins and A. Feldman, J. Am. Chem. Soc. 44, 2665 (1922).
http://dx.doi.org/10.1021/ja01433a001
14.
14.Y.-C. Wu, L.-W. Wang, and C.-H. Lai, Applied Physics Letters 91, 2502 (2007).
15.
15.B. Bhushan, Modern Tribology Handbook (CRC Press, 2000), pp. 625626.
16.
16.S.A. Sebt, A. Khajehnezhad, R.S. Dariani, and M. Akhavan, J Inorg Organomet. Polym. 23, 881 (2013).
http://dx.doi.org/10.1007/s10904-013-9862-5
17.
17.J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, and X.H. Liu, J. Phys. D: Appl. Phys. 30, 5 (1997).
http://dx.doi.org/10.1088/0022-3727/30/1/002
18.
18.A.T. McCallum, D. Kercher, J. Lille, D. Weller, and O. Hellwig, Applied Physics Letters 101, 092402 (2012).
http://dx.doi.org/10.1063/1.4748162
19.
19.S. Maenosono, T. Suzuki, and S. Saita, J. Magn. Magn. Mater 320, L79 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.01.026
20.
20.E. Yang, S. Ratanaphan, J.-G. Zhu, and D.E. Laughlin, J. Appl. Phys. 109, 07B770 (2011).
21.
21.K.F. Dong, H.H. Li, Y.G. Peng, G. Ju, G.M. Chow, and J.S. Chen, Scientific Reports 4, 5607 (2014).
22.
22.K.M. Cher, T.J. Zhou, W.K. Lim, J.F. Hu, and P.W. Lwin, IEEE Trans. Mag. 49, 2586 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2256884
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943605
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943605
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943605
2016-03-04
2016-10-01

Abstract

Large area arrays of FePt nanodots are fabricated on patterned substrates made of SiO, SiN and TiN. The templates have a depth of ∼10 nm and a pitch of ∼20 nm with 18 nm wide holes. FePt is sputtered on the nanohole arrays, then back-etched, leaving a highly ordered array of FePt nanodots behind. To promote phase transformation to the L1 phase, the samples are annealed at temperatures of 550-650° C. During annealing, the FePt strongly dewets SiO and SiN substrates, causing sintering and coalescence of the FePt nanodots, but the nanodots remain highly ordered on the TiN substrate. The nanodot arrays on TiN are characterized magnetically before and after annealing. The out-of-plane coercivity increases by ∼1 kOe, suggesting partial transformation to the L1 phase. We also show that a capping layer can be sputtered on top of the nanodot arrays prior to annealing to prevent dewetting.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943605.html;jsessionid=0a8y-tvZYNHvuO3CiotRAABH.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943605&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943605&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943605'
Right1,Right2,Right3,