Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. C. Schulthess and W. H. Butler, J. Appl. Phys. 85, 5510 (1999).
2.J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82, 2859 (2003).
3.T. J. Zhou, K. Cher, J. F. Hu, Z. M. Yuan, and B. Liu, J. Appl. Phys. 111, 07C116 (2012).
4.N. T. Nam, W. Lu, and T. Suzuki, J. Appl. Phys. 105, 07D708 (2009).
5.S. Yuasa, M. Nyvlt, T. Katayama, and Y. Suzuki, J. Appl. Phys. 83, 6813 (1998).
6.M. Fallot and R. Hocart, Rev. Sci. 77, 498499 (1939).
7.J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33, 1343 (1962).
8.M. R. Ibarra and P. A. Algarabel, Phys. Rev. B 50, 4196 (1994).
9.P. A. Algarabel, M. R. Ibarra, C. Marquina, A. d. Moral, J. Galibert, M. Iqbal, and S. Askenazy, Appl. Phys. Lett. 66, 3061 (1995).
10.Y. Ohtani and I. Hatakeyama, J. Appl. Phys. 74, 3328 (1993).
11.Y. Ohtani and I. Hatakeyama, J. Magn. Magn. Mater. 131, 339 (1994).
12.S. Hashi, S. Yanase, Y. Okazaki, and M. Inoue, IEEE Trans. Magn. 40, 2784 (2004).
13.S. Maat, J.-U. Thiele, and E. E. Fullerton, Phys. Rev. B 72, 214432 (2005).
14.Y. Ding, D. A. Arena, J. Dvorak, M. Ali, C. J. Kinane, C. H. Marrows, B. J. Hickey, and L. H. Lewis, J. Appl. Phys. 103, 07B515 (2008).
15.I. Suzuki, T. Koike, M. Itoh, T. Taniyama, and T. Sato, J. Appl. Phys. 105, 07E501 (2009).
16.R. Fan, C. J. Kinane, T. R. Charlton, R. Dorner, M. Ali, M. A. de Vries, R. M. D. Brydson, C. H. Marrows, B. J. Hickey, D. A. Arena, B. K. Tanner, G. Nisbet, and S. Langridge, Phys. Rev. B 82, 184418 (2010).
17.A. X. Gray, D. W. Cooke, P. Krüger, C. Bordel, A. M. Kaiser, S. Moyerman, E. E. Fullerton, S. Ueda, Y. Yamashita, A. Gloskovskii, C. M. Schneider, W. Drube, K. Kobayashi, F. Hellman, and C. S. Fadley, Phys. Rev. Lett. 108, 257208 (2012).
18.I. Suzuki, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 104, 022401 (2014).
19.I. Suzuki, Y. Hamasaki, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 105, 172401 (2014).
20.R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Ünal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes, Nat. Mater. 13, 345351 (2014).
21.X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kunes, D. Yi, J-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367374 (2014).
22.S. Yamada, K. Tanikawa, J. Hirayama, T. Kanashima, T. Taniyama, and K. Hamaya, Phys. Rev. B 92, 094416 (2015).
23.Y. Maeda, K. Hamaya, S. Yamada, Y. Ando, K. Yamane, and M. Miyao, Appl. Phys. Lett. 97, 192501 (2010).
24.K. Hamaya, T. Murakami, S. Yamada, K. Mibu, and M. Miyao, Phys. Rev. B 83, 144411 (2011).
25.S. Yamada, J. Sagar, S. Honda, L. Lari, G. Takemoto, H. Itoh, A. Hirohata, K. Mibu, M. Miyao, and K. Hamaya, Phys. Rev. B 86, 174406 (2012).
26.J. Hirayama, K. Tanikawa, M. Kawano, S. Yamada, M. Miyao, and K. Hamaya, IEEE Trans. Magn. 50, 11 (2014).
27.M. Walterfang, W. Keune, K. Trounov, R. Peters, U. Rücker, and K. Westerholt, Phys. Rev. B 73, 214423 (2006).
28.C. Baldasseroni, C. Bordel, A. X. Gray, A. M. Kaiser, F. Kronast, J. Herrero-Albillos, C. M. Schneider, C. S. Fadley, and F. Hellman, Appl. Phys. Lett. 100, 262401 (2012).
29.W. P. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956);
29.W. P. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).

Data & Media loading...


Article metrics loading...



We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfacesgrown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd