Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943757
1.
1.U. K. Rossler, A. N. Bogdanov, and C. Pfleiderer, Nature 442(7104), 797-801 (2006).
http://dx.doi.org/10.1038/nature05056
2.
2.S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323(5916), 915-919 (2009).
http://dx.doi.org/10.1126/science.1166767
3.
3.X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465(7300), 901-904 (2010).
http://dx.doi.org/10.1038/nature09124
4.
4.F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330(6011), 1648-1651 (2010).
http://dx.doi.org/10.1126/science.1195709
5.
5.X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Materials 10(2), 106-109 (2011).
http://dx.doi.org/10.1038/nmat2916
6.
6.X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nature Communications 3, 988 (2012).
http://dx.doi.org/10.1038/ncomms1990
7.
7.N. Nagaosa and Y. Tokura, Nature Nanotechnology 8, 899-911 (2013).
http://dx.doi.org/10.1038/nnano.2013.243
8.
8.Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Physical Review Letters 109(3), (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.037603
9.
9.J. D. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Physical Review Letters 107(13), 136804 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.136804
10.
10.T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nature Physics 8(4), 301-304 (2012).
http://dx.doi.org/10.1038/nphys2231
11.
11.P. Milde, D. Kohler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Muhlbauer, C. Pfleiderer, S. Buhrandt, C. Schutte, and A. Rosch, Science 340(6136), 1076-1080 (2013).
http://dx.doi.org/10.1126/science.1234657
12.
12.A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni, Physical Review Letters 102(18), 186602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.186602
13.
13.A. Hoffmann and S. D. Bader, PHYSICAL REVIEW APPLIED 4, 047001 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.047001
14.
14.Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Ronnow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nature Communications 6 (2015).
15.
15.G. Chen, T. P. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Z. Wu, and A. K. Schmid, Nature Communications 4, 3671 (2013).
16.
16.G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N’Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Physical Review Letters 110(17), 177204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177204
17.
17.A. Fert, V. Cros, and J. Sampaio, Nature Nanotechnology 8(3), 152-156 (2013).
http://dx.doi.org/10.1038/nnano.2013.29
18.
18.J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nanotechnology 8(11), 839-844 (2013).
http://dx.doi.org/10.1038/nnano.2013.210
19.
19.A. Thiaville, S. Rohart, E. Jue, V. Cros, and A. Fert, Epl 100(5), 57002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/57002
20.
20.R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, Scientific Reports 4, 6784 (2014).
http://dx.doi.org/10.1038/srep06784
21.
21.W. J. Jiang, P. Upadhyaya, W. Zhang, G. Q. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science 349(6245), 283-286 (2015).
http://dx.doi.org/10.1126/science.aaa1442
22.
22.M. B. Jungfleisch, W. Zhang, W. Jiang, and A. Hoffmann, SPIN 05(03), 153005 (2015).
http://dx.doi.org/10.1142/S2010324715300054
23.
23.S. Emori, U. Bauer, S. M. Ahn, E. Martinez, and G. S. Beach, Nature Materials 12(7), 611-616 (2013).
http://dx.doi.org/10.1038/nmat3675
24.
24.N. Perez, E. Martinez, L. Torres, S. H. Woo, S. Emori, and G. S. D. Beach, Applied Physics Letters 104(9), 092403 (2014).
http://dx.doi.org/10.1063/1.4867199
25.
25.S. Rohart and A. Thiaville, Physical Review B 88(18), 184422 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184422
26.
26.K. S. Ryu, L. Thomas, S. H. Yang, and S. Parkin, Nature Nanotechnology 8(7), 527-533 (2013).
http://dx.doi.org/10.1038/nnano.2013.102
27.
27.S. Woo, K. Litzius, B. Krüger, M-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. Reeve, M. Weigand, P. Agrawal, P. Fischer, M. Kläui, and G. S. D. Beach, Preprint at: http://arxiv.org/abs/1502.07376 (2015).
28.
28.Y. Tchoe and J. H. Han, Physical Review B 85(17), 174416 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.174416
29.
29.A. Hoffmann, IEEE Transactions on Magnetics 49(10), 5172-5193 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2262947
30.
30.L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336(6081), 555-558 (2012).
http://dx.doi.org/10.1126/science.1218197
31.
31.J. Eggers, Reviews of Modern Physics 69(3), 865-930 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.865
32.
32.K. von Bergmann, Science 349(6245), 234-235 (2015).
http://dx.doi.org/10.1126/science.aab3689
33.
33.N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341(6146), 636-639 (2013).
http://dx.doi.org/10.1126/science.1240573
34.
34.H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Preprint at: http://arxiv.org/abs/1501.05511 (2015).
35.
35.G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Applied Physics Letters 106(24), (2015).
36.
36.J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, and V. Jacques, Science 344(6190), 1366-1369 (2014).
http://dx.doi.org/10.1126/science.1250113
37.
37.J. P. Tetienne, T. Hingant, L. J. Martinez, S. Rohart, A. Thiaville, L. H. Diez, K. Garcia, J. P. Adam, J. V. Kim, J. F. Roch, I. M. Miron, G. Gaudin, L. Vila, B. Ocker, D. Ravelosona, and V. Jacques, Nature Communications 6 (2015).
http://dx.doi.org/10.1038/ncomms7733
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943757
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943757
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943757
2016-03-07
2016-09-24

Abstract

Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room-temperature Néel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of Néel skyrmions that are enabled by the electrical current-induced spin-orbit torques. Towards the nanoscale Néel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943757.html;jsessionid=2wglVjH_xSOCFMqFZxRnAiB0.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943757&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943757&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943757'
Right1,Right2,Right3,