Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943758
1.
1.J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.1213
2.
2.A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2262947
3.
3.W. Zhang, M. B. Jungfleisch, W. Jiang, J. Sklenar, F. Y. Fradin, J. E. Pearson, J. B. Ketterson, and A. Hoffmann, J. Appl. Phys. 117, 172610 (2015).
http://dx.doi.org/10.1063/1.4913887
4.
4.L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036601
5.
5.L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
http://dx.doi.org/10.1126/science.1218197
6.
6.C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
http://dx.doi.org/10.1063/1.4753947
7.
7.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
8.
8.J. C. Slonczewski, J. Magn. Magn. Mater. 195, L261 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00043-8
9.
9.L. Berger, Phys. Rev B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
10.
10.L. Berger, Jour. Appl. Phys. 90, 4632 (2001).
http://dx.doi.org/10.1063/1.1405824
11.
11.D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
12.
12.A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and P. J. Kelly, “Spin pumping and spin transfer,” in Spin Current, edited by S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura (Oxford University Press, 2012).
13.
13.C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley and Sons Inc, 2005).
14.
14.T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).
http://dx.doi.org/10.1109/TMAG.1975.1058782
15.
15.A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438, 339 (2005).
http://dx.doi.org/10.1038/nature04207
16.
16.J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 96, 227601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.227601
17.
17.A. Yamaguchi, H. Miyajima, T. Ono, Y. Suzuki, S. Yuasa, A. Tulapurkar, and Y. Nakatani, Appl. Phys. Lett. 90, 182507 (2007).
http://dx.doi.org/10.1063/1.2737134
18.
18.Y. S. Gui, N. Mecking, X. Zhou, G. Williams, and C.-M. Hu, Phys. Rev. Lett. 98, 107602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.107602
19.
19.N. Mecking, Y. S. Gui, and C.-M. Hu, Phys. Rev. B 76, 224430 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.224430
20.
20.A. Azevedo, L. H. Vilelã-Leao, R. L. Rodríguez-Suárez, A. F. Lacerda Santos, and S. M. Rezende, Phys. Rev. B 83, 144402 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144402
21.
21.M. Schreier, T. Chiba, A. Niedermayr, J. Lotze, H. Huebl, S. Geprägs, S. Takahashi, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Phys. Rev. B 92, 144411 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.144411
22.
22.J. Sklenar, W. Zhang, M. B. Jungfleisch, W. Jiang, H. Chang, J. E. Pearson, M. Wu, J. B. Ketterson, and A. Hoffmann, Phys. Rev. B in press.
23.
23.M. B. Jungfleisch, W. Zhang, J. Sklenar, J. Ding, W. Jiang, H. Chang, F. Y. Fradin, J. E. Pearson, J. B. Ketterson, V. Novosad, M. Wu, and A. Hoffmann, arXiv:1508.01427.
24.
24.W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, and A. Hoffmann, J. Appl. Phys. 117, 17C727 (2015).
http://dx.doi.org/10.1063/1.4915479
25.
25.M. B. Jungfleisch, W. Zhang, J. Sklenar, W. Jiang, J. E. Pearson, J. B. Ketterson, and A. Hoffmann, arXiv:1508.01427.
26.
26.W. Zhang, M. B. Jungfleisch, W. Jiang, Y. Liu, J. E. Pearson, S. G. E. te Velthuis, A. Hoffmann, F. Freimuth, and Y. Mokrousov, Phys. Rev. B 11, 115316 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.115316
27.
27.W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, A. Hoffmann, F. Freimuth, and Y. Mokrousov, Phys. Rev. Lett. 113, 196602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.196602
28.
28.J. B. S. Mendes, R. O. Cunha, O. Alves Santos, P. R. T. Ribeiro, F. L. A. Machado, R. L. Rodríguez-Suárez, A. Azevedo, and S. M. Rezende, Phys. Rev. B 89, 140406(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.89.140406
29.
29.T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, ‘Antiferromagnetic spintronics’, arXiv:1509.05296.
30.
30.X. Zhou, L. Ma, Z. Shi, W. J. Fan, J. -G. Zheng, R. F. L. Evans, and S. M. Zhou, Phys. Rev. B 92, 060402(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.92.060402
31.
31.D. Qu, S. Y. Huang, and C. L. Chien, Phys. Rev. B 92, 020418(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.92.020418
32.
32.T. Kosub, M. Kopte, F. Radu, O. G. Schmidt, and D. Makarov, Phys. Rev. Lett. 115, 097201 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.097201
33.
33.P. Wadley et al., ‘Electrical switching of an antiferromagnet’, arXiv:1503.03765.
34.
34.L. Frangou et al., ‘Enhanced spin pumping by antiferromagnetic IrMn thin films around the magnetic phase transition’, arXiv:1509.03462.
35.
35.S. Fukami et al., ‘Magnetization switching by spin-orbit torque in an antiferromagnet/ferromagnet bilayer system’, arXiv:1507.00888.
36.
36.H. Reichlova, D. Kriegner, V. Holy, K. Olejnik, V. Novak, M. Yamada, K. Miura, S. Ogawa, H. Takahashi, T. Jungwirth, and J. Wunderlich, Phys. Rev. B 92, 165424 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.165424
37.
37.E. V. Gomonay and V. M. Loktev, Low Temp. Phys. 40, 17 (2014).
http://dx.doi.org/10.1063/1.4862467
38.
38.W. Zhang, M. B. Jungfleisch, F. Freimuth, W. Jiang, J. Sklenar, J. E. Pearson, J. B. Ketterson, Y. Mokrousov, and A. Hoffmann, Phys. Rev. B 92, 144405 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.144405
39.
39.W. Zhang et al., ‘Spin transfer torques in permalloy on monolayer MoS2’, unpublished.
40.
40.J. Sklenar, “Control of Ferromagnetic Resonance in Thin Films through Nanostructuring and Interfacial Torques,” Ph.D. thesis, Northwestern University, 2015.
41.
41.W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. P. Parkin, Nature Phys. 11, 496 (2015).
http://dx.doi.org/10.1038/nphys3304
42.
42.C. -F. Pai, Y. Ou, L. H. Vilela-Leao, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 92, 064426 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.064426
43.
43.T. Chiba, G. E. W. Bauer, and S. Takahashi, Phys. Rev. Applied 2, 034003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.034003
44.
44.W. Zhang, M. E. Bowden, and K. M. Krishnan, Appl. Phys. Lett. 98, 092503 (2011);
http://dx.doi.org/10.1063/1.3561516
44.Q. Zhan, W. Zhang, and K. M. Krishnan, Phys. Rev. B 83, 094404 (2011);
http://dx.doi.org/10.1103/PhysRevB.83.094404
44.W. Zhang and K. M. Krishnan, Phys. Rev. B 86, 054415 (2012);
http://dx.doi.org/10.1103/PhysRevB.86.054415
44.W. Zhang and K. M. Krishnan, Phys. Rev. B 88, 024428 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024428
45.
45.T. Skinner, “Electrical control of spin dynamics in spin-orbit coupled ferromagnets,” Ph.D. thesis,University of Cambridge, 2014.
46.
46.L. Liu, “Manipulation of Magnetic Moment Using the Spin Current from Magnetic and Non-Magnetic Materials,” Ph.D. thesis, Cornell University, 2012.
47.
47.N. Vlietstra, J. Shan, V. Castel, J. Ben Youssef, G. E. W. Bauer, and B. J. van Wees, Appl. Phys. Lett. 103, 032401 (2013).
http://dx.doi.org/10.1063/1.4813760
48.
48.H. T. Nembach, J. M. Shaw, M. Weiler, E. Jue, and T. J. Silva, Nature Phys. 11, 825 (2015).
http://dx.doi.org/10.1038/nphys3418
49.
49.C. O. Avci, K. Garello, A. Ghosh, M. Gabureac, S. F. Alvarado, and P. Gambardella, Nature Phys. 11, 570 (2015).
http://dx.doi.org/10.1038/nphys3356
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943758
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943758
2016-03-07
2016-10-01

Abstract

We investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for - and -axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. We also suggest that metallic antiferromagnets may be good candidates for the investigation of various unidirectional effects related to novel spin-orbitronics phenomena.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943758.html;jsessionid=aHINKazM2-ziBFfI5hCTNm8H.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943758&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943758&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943758'
Right1,Right2,Right3,