Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. S. Lee, A. Pirogov, M. S. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park, Nature (London) 451, 805 (2008).
2.O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. 88, 067203 (2002).
3.T. Rudolf, C. Kant, F. Mayr, J. Hemberger, V. Tsurkan, and A. Loidl, New J. Phys. 9, 76 (2007).
4.J. Hemberger, H.A. Krug von Nidda, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 98, 147203 (2007).
5.A. B. Sushkov, O. Tchernyshyov, W. Ratcliff, S.W. Cheong, and H. D. Drew, Phys. Rev. Lett. 94, 137202 (2005).
6.H. Ueda, H. A. Katori, H. Mitamura, T. Goto, and H. Takagi, Phys. Rev. Lett. 94, 047202 (2005).
7.W. K. Wang, J. Y. Yang, J. Li, C. C. Gu, X. L. Chen, Z. T. Zhang, X. B. Zhu, H. B. Wang, Z. R. Yang, M. L. Tian, Y. H. Zhang, and Victor V. Moshchalkov, Appl. Phys. Lett. 106, 062601 (2015).
8.R. Plumier, J. Physiol. (Paris) 27, 213 (1966).
9.J. Akimitsu, K. Siratori, G. Shirane, M. Iizumi, and T. Watanabe, J. Phys. Soc. Jpn. 44, 172 (1978).
10.M. Hidaka, N. Tokiwa, M. Fujii, S. Watanabe, and J. Akimitsu, Phys. Status Solidi B 236, 9 (2003).
11.P. K. Baltzer, M. Robbins, and P. J. Wojtowicz, J. Appl. Phys. 38, 953 (1967).
12.X. L. Chen, Z. R. Yang, W. Tong, Z. H. Huang, L. Zhang, S. L. Zhang, W. H. Song, L. Pi, Y. P. Sun, M. L. Tian, and Y. H. Zhang, J. Appl. Phys. 115, 083916 (2014).
13.H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, and Y. Tokura, J. Phys. Soc. Jpn. 77, 043709 (2008).
14.R. A. Sadykhov, P. L. Gruzin, A. A. Minakov, T. G. Aminov, V. G. Veselago, V. T. Kalinnikov, and V. E. Makhotkin, Pis’ma Zh. Eksp. Teor. Fiz. 28, 596 (1978).
15.G. Busch, B. Magyar, and O. Vogt, Solid State Communications 7, 509 (1969).
16.M. Nogues and J. L. Dormann, J. Magn. Magn. Mater. 87, 54 (1986).
17.E. Loudghiri, M. Nogues, M. Taibi, and A. Belayachi, M. J. Condensed Matter 5, 62 (2004).
18.E. Loudghiri, A. Belayachi, M. Nogues, M. Taibi, M.M. Cruz, and M. Godinho, J. Magn. Magn. Mater. 320, 671 (2008).
19.R. Moessner, Can. J. Phys. 79, 1283 (2001).
20.Y. Ando, J. Takeya, D. L. Sisson, S. G. Doettinger, I. Tanaka, R. S. Feigelson, and A. Kapitulnik, Phys. Rev. B 58, R2913 (1998).
21.B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Phys. Rev. B 63, 245113 (2001).
22.K. Berggold, M. Kriener, C. Zobel, A. Reichl, M. Reuther, R. Müller, A. Freimuth, and T. Lorenz, Phys. Rev. B 72, 155116 (2005).
23.B. A. Hunter, Commission Powder Diffraction Newsletter 20, 21 (1998).
24.V. Tsurkan, J. Hemberger, A. Krimmel, H.-A. Krug von Nidda, P. Lunkenheimer, S. Weber, V. Zestrea, and A. Loidl, Phys. Rev. B 73, 224442 (2006).
25.X. L. Chen, W. H. Song, and Z. R. Yang, Chin. Phys. Lett. 32, 127501 (2015).
26.I. P. Morton and H. M. Rosenberg, Phys. Rev. Lett. 8, 200 (1962).
27.J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 98, 1751 (1955).

Data & Media loading...


Article metrics loading...



Frustration makes a tremendous amount of degenerate ground states which provides no energy scale of its own. Any perturbation has to be considered strong and fascinating phenomena may be emergent upon relieving of frustration. Here, we report the evolution of spin phonon coupling in the frustrated spinel system ZnCdCrSe (0 ≤ ≤ 1) from magnetization, specific heat and thermal conductivity. Our results give clear evidences that the spin-orientated structural transitions decay rapidly as going from 0 to 0.4 while the correlations between spin and lattice degrees of freedom for 0.6 ≤ ≤ 1 become weak and can be explained in terms of the traditional magnetostriction effect. In addition, for 0 ≤ ≤ 0.4 thermal carriers reveal strong scattering from spin fluctuations in the vicinity of owing to strong frustration, in stark contrast with those for 0.6 ≤ ≤ 1 where traditional phonon-like heat conduction behaviors are observed. Moreover, it is shown that a moderate applied magnetic field can drive readily the fluctuations-scattered thermal conductivity toward traditional phonon-like one as observed in CdCrSe, reaching about 30% for = 0.4 at 25 K in 1 T. Such strong field-sensitive effects may introduce new promising functionalities for potential applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd