Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943765
1.
1.S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin Current (Oxford University Press, Oxford, 2012), p. 179.
2.
2.E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Applied Physics Letters 88, 182509 (2006).
http://dx.doi.org/10.1063/1.2199473
3.
3.Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010).
http://dx.doi.org/10.1038/nature08876
4.
4.O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Physical Review Letters 104, 046601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.046601
5.
5.M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, Physical Review Letters 108, 176601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.176601
6.
6.L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Physical Review B 86, 134415 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134415
7.
7.L. Thevenard, C. Gourdon, J. Y. Prieur, H. J. von Bardeleben, S. Vincent, L. Becerra, L. Largeau, and J. Y. Duquesne, Physical Review B 90, 094401 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.094401
8.
8.K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, and E. Saitoh, Nature Materials 10, 737 (2011).
http://dx.doi.org/10.1038/nmat3099
9.
9.K. Uchida, T. An, Y. Kajiwara, M. Toda, and E. Saitoh, Applied Physics Letters 99, 212501 (2011).
http://dx.doi.org/10.1063/1.3662032
10.
10.K. Uchida, H. Adachi, T. An, H. Nakayama, M. Toda, B. Hillebrands, S. Maekawa, and E. Saitoh, Journal of Applied Physics 111, 053903 (2012).
http://dx.doi.org/10.1063/1.3688332
11.
11.N. I. Polzikova and G. D. Mansfeld, in Proceedings of the 1998 IEEE Ultrasonic Symposium, Sendai, Japan, 5-8 October 1998, edited byS. C. Schneider, M. Levy, and B. R. MacAvoy (IEEE, Piscataway, NJ, 1998), pp. 967970.
http://dx.doi.org/10.1109/ULTSYM.1998.762303
12.
12.N. I. Polzikova, A. O. Raevskii, and A. S. Goremykina, J. Commun. Technol. Electron. 58, 87 (2013).
http://dx.doi.org/10.1134/S1064226912120066
13.
13.N. Polzikova, S. Alekseev, I. Kotelyanskii, and A. Raevskiy, in IEEE International Ultrasonics Symposium, Prague, Czech Republic, 21-25 July 2013 (IEEE, Piscataway, NJ, 2013), pp. 216-219.
14.
14.N. Polzikova, S. Alekseev, I. Kotelyanskii, A. Raevskiy, and Y. Fetisov, Journal of Applied Physics 113, 17C704 (2013).
http://dx.doi.org/10.1063/1.4793774
15.
15.N. Polzikova, S. Alekseev, I. Kotelyanskii, and A. Raevskiy, in IEEE International Frequency Control Symposium, Taipei, Taiwan, 19-22 May 2014 (IEEE, Piscataway, NJ, 2014), pp. 127-130.
16.
16.G. T. Kazakov, A. V. Maryakhin, B. P. Nam, A. G. Sukharev, Y. A. Filimonov, I. V. Shein, Y. I. Surov, and R. Y. Margolina, Pis’ma v Zhurnal Tekhnicheskoi Fiziki 14, 1733 (1988).
17.
17.S. L. Vysotskii, G. T. Kazakov, B. P. Nam, A. V. Maryakhin, A. G. Sukharev, Y. A. Filimonov, and A. S. He, Fizika Tverdogo Tela 34, 1376 (1992)
17.[S. L. Vysotskii, G. T. Kazakov, B. P. Nam, A. V. Maryakhin, A. G. Sukharev, Y. A. Filimonov, and A. S. He, Soviet Physics. Solid State 34, 731 (1992)].
18.
18.S. L. Vysotsky, G. T. Kazakov, A. V. Maryakhin, B. P. Nam, A. G. Sukharev, Y. A. Filimonov, and A. S. He, Radiotekhnika i Elektronika 37, 1086 (1992)
18.[S. L. Vysotsky, G. T. Kazakov, A. V. Maryakhin, B. P. Nam, A. G. Sukharev, Y. A. Filimonov, and A. S. He, Soviet J. Commun. Technol. Electron. 37, 92 (1992)].
19.
19.A. G. Temiryazev, M. P. Tikhomirova, P. E. Zil’berman, A. V. Maryakhin, and A. S. Khe, Pis’ma v Zhurnal Tekhnicheskoi Fiziki 19, 75 (1993)
19.[A. G. Temiryazev, M. P. Tikhomirova, P. E. Zil’berman, A. V. Maryakhin, and A. S. Khe, Technical Physics Letters 19, 631 (1993)].
20.
20.H. Le Gall, J. P. Castera, P. Hartemann, and D. Mahasoro, IEEE Transactions on Magnetics 22, 990 (1986).
http://dx.doi.org/10.1109/TMAG.1986.1064322
21.
21. A least-square fit to the data-set #2 in Fig. 1 of Ref. 19 with function yields αG ≈ 5.1 ⋅ 10−5 and ΔH0 ≈ 0.19 Oe, where the latter is the inhomogeneous broadening and γ is the gyromagnetic ratio.
22.
22.N. F. Foster, G. A. Coquin, G. A. Rozgonyi, and F. A. Vannatta, IEEE Transactions on Sonics and Ultrasonics 15, 28 (1968).
http://dx.doi.org/10.1109/T-SU.1968.29443
23.
23. The field was calculated by using the relation E = U/d, where U is the measured voltage, d = 0.168 mm is the length of the Pt stripe segment located underneath the BAW transducer (see Fig. 1(b)).
24.
24.A. Kamra, H. Keshtgar, P. Yan, and G. E. W. Bauer, Physical Review B 91, 104409 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.104409
25.
25.H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F.Y. Yang, Physical Review Letters 112, 197201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.197201
26.
26. Note that in YIG gr scales linearly with tF while tF < 200 nm, and saturates at higher tF (see for example Ref. 27).
27.
27.M. B. Jungfleisch, A. V. Chumak, A. Kehlberger, V. Lauer, D. H. Kim, M. C. Onbasli, C. A. Ross, M. Kläui, and B. Hillebrands, Physical Review B 91, 134407 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.134407
28.
28. Here b2 is the magnetoelastic coupling constant, b2 = B2/Ms ≈ 3 ⋅ 104 erg/(cm3 ⋅ G) for (Ga, Sc)-YIG (see Ref. 29); kMER is the wave vector corresponding MER, kMER ≈ 3 ⋅ 104 cm−1; u is an elastic displacement; as follows from Fig. 1(c); ρ ≈ 5.17 g/cm3, vt ≈ 3.9 ⋅ 105 cm/s, are YIG density and transversal velocity, respectively.
29.
29.Y. A. Filimonov, Doctoral Thesis, Moscow, 2008 (in Russian).
30.
30. We put here nm, see Ref. 26. Rw/L = 37 Ω ⋅ 0.375 mm/0.5 mm ≈27.8 Ω, see Ref. 5.
31.
31. μV/mm, see Fig. 2(b), , see Ref. 3, , see Ref. 5.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943765
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943765
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943765
2016-03-08
2016-09-26

Abstract

We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943765.html;jsessionid=xUmepywpoOdbOsrQHbHQ-W6Z.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943765&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943765&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943765'
Right1,Right2,Right3,