Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. M. D. Coey and P. A. I. Smith, J. Magn. Magn. Mater. 200, 405 (1999).
2.S. Bhattacharyya, J. Phys. Chem. C 119, 1601 (2015).
3.B. C. Frazer, Phys. Rev. 112, 751 (1958).
4.E. H. du Marchie van Voorthuysen, N. C. Chechenin, and D. O. Boerma, Metall. Mater. Trans. A 33A, 2593 (2002).
5.E. L. P. Blancá, J. Desimonri, N. E. Christensen, H. Emmerich, and S. Cotteneir, Phys. Status Solidi B 246, 909 (2009).
6.S. Kokado, N. Fujima, K. Harigaya, H. Shimizu, and A. Sakuma, Phys. Rev. B 73, 172410 (2006).
7.K. Sunaga, M. Tsunoda, K. Komagaki, Y. Uehara, and M. Takahashi, J. Appl. Phys. 102, 013917 (2007).
8.Y. Komasaki, M. Tsunoda, S. Isogami, and M. Takahashi, J. Appl.Phys. 105, 07C928 (2009).
9.S. Isogami, M. Tsunoda, Y. Komasaki, A. Sakuma, and M. Takahashi, Appl. Phys. Express 3, 103002 (2010).
10.M. Tsunoda, Y. Komasaki, S. Kokado, S. Isogami, C. C. Chen, and M. Takahashi, Appl. Phys. Express 2, 083001 (2009).
11.M. Tsunoda, H. Takahashi, S. Kokado, Y. Komasaki, A. Sakuma, and M. Takahashi, Appl. Phys. Express 3, 113003 (2010).
12.K. Ito, K. Kabara, H. Takahashi, T. Sanai, K. Toko, T. Suemasu, and M. Tsunoda, Jpn. J. Appl. Phys. 51, 068001 (2012).
13.K. Kabara, M. Tsunoda, and S. Kokado, Appl. Phys. Express 7, 063003 (2014).
14.Z. R. Li, X. P. Feng, X. C. Wang, and W. B. Mi, Mater. Res. Bull. 65, 175 (2015).
15.S. Kokado and M. Tsunoda, J. Phys. Soc. Jpn. 84, 094710 (2015).
16.R. R. Birss, Symmetry and Magnetism (North-Holland Publishing Co., Amsterdam, 1964), p. 226.
17.J. Li, S. L. Li, Z. W. Wu, S. Li, H. F. Chu, J. Wang, Y. Zhang, H. Y. Tian, and D. N. Zheng, J. Phys.: Condens. Matter 22, 146006 (2010).
18.J. B. Nelson and D. P. Riely, Proc. Phys. Soc. (London) 57, 160 (1945).

Data & Media loading...


Article metrics loading...



Transverse anisotropic magnetoresistance (AMR) effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal FeN film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2 component () exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the FeN film, the shows a positive small value (0.12%) from 300 K to 50 K. However, the increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the FeN film. In addition, the out-of-plane and in-plane lattice constants ( and ) were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small above 50 K is attributed to a slightly distorted FeN lattice (/ = 1.002).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd