Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4943932
1.
1.G. C. Han, J. J. Qiu, L. Wang, W. K. Yeo, and C. C. Wang, IEEE Trans. Magn. 46, 709 (2010).
http://dx.doi.org/10.1109/TMAG.2009.2034866
2.
2.J. P. Wang, Proc. IEEE 96, 1847 (2008).
http://dx.doi.org/10.1109/JPROC.2008.2004318
3.
3.X. Sun, Z. Y. Jia, Y. H. Huang, J. W. Harrell, D. E. Nikles, K. Sun, and L. M. Wang, J. Appl. Phys. 95, 6747 (2004).
http://dx.doi.org/10.1063/1.1667441
4.
4.O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001).
http://dx.doi.org/10.1063/1.1346628
5.
5.Y. Xu, Z. G. Sun, Y. Qiang, and D. J. Sellmyer, J. Magn. Magn. Mater. 266, 164 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00467-0
6.
6.Y. Yang, K. K. M. Pandey, J. S. Chen, G. M. Chow, and J. F. Hu, J. Appl. Phys. 105, 07B709 (2009).
7.
7.T. T. Huang, F. Wang, J. H. Guo, and X. H. Xu, Rare Met. 28, 14 (2009).
http://dx.doi.org/10.1007/s12598-009-0004-8
8.
8.V. Karanasos, I. Panagiotopoulos, D. Niarchos, H. Okumura, and G. C. Hadjipanayis, J. Magn. Magn. Mater. 236, 234 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00045-2
9.
9.H. Yamaguchi, O. Kitakami, S. Okamoto, Y. Shimada, K. Oikawa, and K. Fukamichi, Appl. Phys. Lett. 79, 2001 (2001).
http://dx.doi.org/10.1063/1.1408605
10.
10.Y. Khemjeen, S. Pinitsoontorn, A. Chimpoosor, and S. Maensiri, J. Appl. Phys. 116, 053910 (2014).
http://dx.doi.org/10.1063/1.4892487
11.
11.V. Tzitzios, G. Basina, L. Colak, D. Niarchos, and G. C. Hadjipanayis, J. Appl. Phys. 109, 07A718 (2011).
12.
12.N. Sehdev, R. Medwal, and S. Annapoorni, J. Appl. Phys. 110, 033901 (2011).
http://dx.doi.org/10.1063/1.3615939
13.
13.A. S. Hussein, P. Murugaraj, C. J. Rix, and D. E. Mainwaring, J. Mater. Res. 24, 499 (2009).
http://dx.doi.org/10.1557/JMR.2009.0053
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4943932
Loading
/content/aip/journal/adva/6/5/10.1063/1.4943932
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4943932
2016-03-10
2016-09-27

Abstract

This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L1structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same technique but in the absence of Bi substitution. The as-synthesized particles at 330 °C have an average size of 11.7 nm and a partially ordered L1 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 and 700 °C. The structural and magnetic properties suggest that Bi promotes the formation of ordered L1 phase at low temperatures leading to the development of high coercivities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4943932.html;jsessionid=qoFBUDQ_tLouoOvsPCmCNKdo.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4943932&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4943932&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4943932'
Right1,Right2,Right3,