Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Krzanich, “Intel chief raises doubts over moores law” (2015).
2.The International Technology Roadmap for Semiconductors (ITRS): Emerging Research Devices (ERD)” (2013).
3.J. Hutchby, “The nanoelectronics roadmap,” Emerging Nanoelectronic Devices (John Wiley & Sons Ltd, 2014), pp. 114.
4.R. P. Cowburn and M. E. Welland, “Room temperature magnetic quantum cellular automata,” Science 287, 14661468 (2000).
5.M. Becherer, J. Kiermaier, S. Breitkreutz, I. Eichwald, G. Žiemys, G. Csaba, and D. Schmitt-Landsiedel, “Towards on-chip clocking of perpendicular Nanomagnetic Logic,” Solid-State Electronics 102, 4651 (2014).
6.D. James, “Intel 14 nm generation tri-gate technical analysis reports” (2015).
7.I. Eichwald, S. Breitkreutz, J. Kiermaier, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, “Signal crossing in perpendicular nanomagnetic logic,” Journal of Applied Physics 115, 17E510 (2014).
8.I. Eichwald, S. Breitkreutz, G. Ziemys, G. Csaba, W. Porod, and M. Becherer, “Majority logic gate for 3D magnetic computing,” Nanotechnology 25, 335202 (2014).
9.S. Breitkreutz, J. Kiermaier, I. Eichwald, X. Ju, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, “Majority Gate for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy,” IEEE Transactions on Magnetics 48, 43364339 (2012).
10.S. Breitkreutz, A. Fischer, S. Kaffah, S. Weigl, I. Eichwald, G. Ziemys, D. Schmitt-Landsiedel, and M. Becherer, “Time-dependent domain wall nucleation probability in field-coupled nanomagnets with perpendicular anisotropy,” Journal of Applied Physics 117, 17B503 (2015).
11.H. Kurt, M. Venkatesan, and J. M. D. Coey, “Enhanced perpendicular magnetic anisotropy in Co/Ni multilayers with a thin seed layer,” Journal of Applied Physics 108, 073916 (2010).
12.J. Sinha, M. Hayashi, A. J. Kellock, S. Fukami, M. Yamanouchi, H. Sato, S. Ikeda, S. Mitani, S.-h. Yang, S. S. P. Parkin, and H. Ohno, “Enhanced interface perpendicular magnetic anisotropy in Ta CoFeB MgO using nitrogen doped Ta underlayers,” Applied Physics Letters 102, 242405 (2013).
13.J. H. Franken, M. Hoeijmakers, R. Lavrijsen, and H. J. M. Swagten, “Domain-wall pinning by local control of anisotropy in pt/co/pt strips,” Journal of Physics: Condensed Matter 24, 024216 (2012).
14.C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. P. Jamet, J. Ferré, C. Chappert, T. Devolder, V. Mathet, and H. Bernas, “Modifications of magnetic properties of Pt/Co/Pt thin layers by focused gallium ion beam irradiation,” Journal of Applied Physics 91, 3103 (2002).
15.S. Breitkreutz, J. Kiermaier, S. Vijay Karthik, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, “Controlled reversal of Co/Pt Dots for nanomagnetic logic applications,” Journal of Applied Physics 111, 07A715 (2012).
16.D. Meeker, “Finite element method magnetics” (2010).
17. The misalignment is taken in to the account and is assured the in plane competent of overall field is just 1% of perpendicular to the surface component.
18.S. Breitkreutz, I. Eichwald, J. Kiermaier, A. Papp, G. Csaba, M. Niemier, W. Porod, D. Schmitt-Landsiedel, and M. Becherer, “1-Bit Full Adder in Perpendicular Nanomagnetic Logic using a Novel 5-Input Majority Gate,” EPJ Web of Conferences 75, 05001 (2014).
19.A. Hubert and R. Schäfer, “Magnetic Domains” (Springer-Verlag Berlin Heidelberg, 1998)
20.M. Sharrock and J. McKinney, “Kinetic effects in coercivity measurements,” IEEE Transactions on Magnetics 17, 30203022 (1981).
21.V. L. Safonov and H. N. Bertram, ““Dynamic-thermal” reversal in a fine micromagnetic grain: Time dependence of coercivity,” Journal of Applied Physics 87, 5681 (2000).

Data & Media loading...


Article metrics loading...



We have investigated the magnetization reversal of fabricated Co/Pt nanomagnets with perpendicular anisotropy within a wide range of magnetic field pulse widths. This experiment covers the pulse lengths from 700 ms to 20 ns. We observed that the commonly used Arrhenius model fits very well the experimental data with a single parameter set for pulse times above 100 ns (t > 100 ns). However, below 100 ns (t < 100 ns), a steep increase of the switching field amplitude is observed and the deviation from the Arrhenius model becomes unacceptable. For short pulse times the model can be adjusted by the reversal time term for the dynamic switching field which is only dependent on the pulse amplitude and not on temperature anymore. Precise modeling of the magnetization reversal in the sub-100 ns-range is crucially important to ensure reliable operation in the favored GHz-range as well as to explore and design new kinds of Nanomagnetic Logic circuits and architectures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd