Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999).
2.M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).
3.H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T. J. Sato, J. W. Lynn, K. Matsuhira, and Z. Hiroi, J. Phys. Soc. Jpn. 78, 103706 (2009).
4.Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsushita, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, J. Phys. Soc. Jpn. 72, 3014 (2003).
5.H. W. J. Blöte, R. F. Wielinga, and W. J. Huiskamp, Physica 43, 549 (1969).
6.J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, J. Phys.: Condens. Matter 13, 9301 (2001).
7.L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kato, K.-D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Nat. Commun. 3, 992 (2012).
8.Y. Yasui, N. Hamachi, Y. Kono, S. Kittaka, and T. Sakakibara, SPIN 5, 1540002 (2015).
9.K. A. Ross, L. R. Yaraskavitch, M. Laver, J. S. Gardner, J. A. Quilliam, S. Meng, J. B. Kycia, D. K. Singh, Th. Proffen, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 84, 174442 (2011).
10.A. Yaouanc, P. Dalmas de Réotier, C. Marin, and V. Glazkov, Phys. Rev. B 84, 172408 (2011).
11.K. A. Ross, Th. Proffen, H. A. Dabkowska, J. A. Quilliam, L. R. Yaraskavitch, J. B. Kycia, and B. D. Gaulin, Phys. Rev. B 86, 174424 (2012).
12.R. M. D’Ortenzio, H. A. Dabkowska, S. R. Dunsiger, B. D. Gaulin, M. J. P. Gingras, T. Goko, J. B. Kycia, L. Liu, T. Medina, T. J. Munsie, D. Pomaranski, K. A. Ross, Y. J. Uemura, T. J. Williams, and G. M. Luke, Phys. Rev. B 88, 134428 (2013).
13.L.-J. Chang, M. R. Lees, I. Watanabe, A. D. Hillier, Y. Yasui, and S. Onoda, Phys. Rev. B 89, 184416 (2014).
14.E. Lhotel, S. R. Giblin, M. R. Lees, G. Balakrishnan, L. J. Chang, and Y. Yasui, Phys. Rev. B 89, 224419 (2014).
15.T. Sakakibara, H. Mitamura, T. Tayama, and H. Amitsuka, J. Appl. Phys. 33, 5067 (1994).

Data & Media loading...


Article metrics loading...



Measurements of magnetization () and specific heat () under a [001] magnetic field were carried out on a single crystal of a quantum spin ice system YbTiO in order to investigate a feature of the transition occurred at ∼ 0.2 K. As a result of applying the magnetic field μ < 0.1 T, the / curve structure and transition temperature barely changed. On the other hand, applying the more than 0.1 T magnetic field, the / curve structure drastically change from sharp peak structure to broad peak one, and the broad peak temperature of / curves linearly increases with increasing magnetic field (). In the magnetic field μ < 0.1 T, the magnetization drastically increases around ∼ 0.2 K with decreasing , and a thermal hysteresis loop of the curve is observed. With increasing , the thermal hysteresis loop of the curves disappears above μ = 0.1 T. We can understand these results, where YbTiO exhibits a first-order ferromagnetictransition associated with the latent heat corresponding to the energy of μ = 0.1 T. Basis of the phase diagram along [001] magnetic field, the feature of the transition occurred at ∼ 0.2 K in quantum spin ice system YbTiO is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd