Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4944343
1.
1.M.T. Johnson, P.J.H. Bloemen, F.J. a Den Broeder, and J.J. De Vries, Reports Prog. Phys. 59, 1409 (1999).
http://dx.doi.org/10.1088/0034-4885/59/11/002
2.
2.T. Ueno, J. Sinha, N. Inami, Y. Takeichi, S. Mitani, K. Ono, and M. Hayashi, Sci. Rep. 5, 14858 (2015).
http://dx.doi.org/10.1038/srep14858
3.
3.M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007).
http://dx.doi.org/10.1038/nature05802
4.
4.I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).
http://dx.doi.org/10.1038/nature10309
5.
5.G. Yu, P. Upadhyaya, Y. Fan, J.G. Alzate, W. Jiang, K.L. Wong, S. Takei, S.A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P.K. Amiri, and K.L. Wang, Nat. Nanotechnol. 9, 548 (2014).
http://dx.doi.org/10.1038/nnano.2014.94
6.
6.M. Einax, W. Dieterich, and P. Maass, Rev. Mod. Phys. 85, 921 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.921
7.
7.N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, a. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, Phys. Rev. Lett. 81, 5229 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5229
8.
8.R. A. I. Figueroa, J. Bartolomé, L. M. García, F. Bartolomé, O. Bunau, J. Stankiewicz, L. Ruiz, J. M. González-Calbet, F. Petroff, C. Deranlot, S. Pascarelli, P. Bencok, N. B. Brookes, and F. Wilhelm, Phys. Rev. B 90, 174421 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.174421
9.
9.S.-H. Yang, K.-S. Ryu, and S. Parkin, Nat. Nanotechnol. 10, 221 (2015).
http://dx.doi.org/10.1038/nnano.2014.324
10.
10.W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, Science. 349, 283 (2015).
http://dx.doi.org/10.1126/science.aaa1442
11.
11.P.F. Carcia, J. Appl. Phys. 63, 5066 (1988).
http://dx.doi.org/10.1063/1.340404
12.
12.B. Zhang, K.M. Krishnan, C.H. Lee, and R.F.C. Farrow, J. Appl. Phys. 73, 6198 (1993).
http://dx.doi.org/10.1063/1.352696
13.
13.J.C.A. Huang, L.C. Wu, A.C. Hsu, Y.M. Hu, T.H. Wu, and C.H. Lee, Phys. Rev. B 59, 1209 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1209
14.
14.S. Bandiera, R.R. Sousa, B. Rodmacq, and B. Dieny, IEEE Magn. Lett. 2, 3000504 (2011).
http://dx.doi.org/10.1109/LMAG.2011.2174032
15.
15. In the current study, we define Tc as the temperature at which the magnetization hits zero. This definition will be a good and easy measure to compare different samples. The accurate value of Tc can be obtained from modified Arrot’s plot. From this Tc we can even find out the critical exponent guiding the variation of M near to Tc which in-turn will give us the dimensionality of the ferromagnetic film.
16.
16.S. Wei, B. Li, T. Fujimoto, and I. Kojima, Phys. Rev. B 58, 3605 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3605
17.
17.C.H. Lee, R.F.C. Farrow, C.J. Lin, E.E. Marinero, and C.J. Chien, Phys. Rev. B 42, 11384 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.11384
18.
18.R.A. Johnson, Phys. Rev. B 37, 3924 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.3924
19.
19.S. Fukami, T. Suzuki, H. Tanigawa, N. Ohshima, and N. Ishiwata, Appl. Phys. Express 3, 113002 (2010).
http://dx.doi.org/10.1143/APEX.3.113002
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4944343
Loading
/content/aip/journal/adva/6/5/10.1063/1.4944343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4944343
2016-03-11
2016-09-28

Abstract

The dependence of perpendicular magnetization and Curie temperature (T) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt) and presence of Tabuffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T was measured using SQUID magnetometer. We have observed a systematic dependence of T on the thickness of Pt. For 8nm thickness of Pt the Co layer of 0.35nm showed ferromagnetism with perpendicular anisotropy at room temperature. As the thickness of the Pt was decreased to 2nm, the T went down below 250K. XRD data indicated polycrystalline growth of Pt on SiO. On the contrary Tabuffer layer promoted the growth of Pt(111). As a consequence Ta(5nm)/Pt(3nm)/Co(0.35nm)/Pt(2nm) had much higher T (above 300K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T and anisotropy by varying the Pt thickness and also by introducing Tabuffer layer. We attribute these observations to the micro-structural evolution of Pt layer which hosts the Co layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4944343.html;jsessionid=BESIjiKuG8n_RfzVK4P3PRZ4.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4944343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4944343&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4944343'
Right1,Right2,Right3,