Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
2.X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Nature Phys. 3, 197 (2007).
3.M. Tran, H. Jaffrès, C. Deranlot, J.-M. George, A. Fert, A. Miard, and A. Lemaître, Phys. Rev. Lett. 102, 036601 (2009).
4.S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R. Jansen, Nature 462, 491 (2009).
5.T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi, Appl. Phys. Lett. 98, 012508 (2011).
6.K. Jeon, B.-C. Min, Y.-H. Jo, H.-S. Lee, I.-J. Shin, C.-Y. Park, S.-Y. Park, and S.-C. Shin, Phys. Rev. B 84, 165315 (2011).
7.S. Iba, H. Saito, A. Spiesser, S. Watanabe, R. Jansen, S. Yuasa, and K. Ando, Appl. Phys. Exp. 5, 053004 (2012).
8.Y. Pu, J. Beardsley, P. M. Odenthal, A. G. Swartz, R. K. Kawakami, P. C. Hammel, E. Johnston-Halperin, J. Sinova, and J. P. Pelz, Appl. Phys. Lett. 103, 012402 (2013).
9.R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).
10.B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).
11.I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
12.X. Y. Dong, C. Adelmann, J. Q. Xie, C. J. Palmstrøm, X. Lou, J. Strand, P. A. Crowell, J.-P. Barnes, and A. K. Petford-Long, Appl. Phys. Lett. 86, 102107 (2005).
13.Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 182105 (2009).
14.S. G. Bhat and P. S. Anil Kumar, Sci. Rep. 4, 5588 (2014).
15.W. Han, X. Jiang, A. Kajdos, S.-H Yang, S. Stemmer, and S. S. P. Parkin, Nat. Commun. 4, 2134 (2013).
16.J. G. Simmons, J. Appl. Phys. 34, 2581 (1963).
17.A. Dankert, R. S. Dulal, and S. P. Dash, Sci. Rep. 3, 3196 (2013).
18.S. Sharma, A. Spiesser, S. P. Dash, S. Iba, S. Watanabe, B. J. van Wees, H. Saito, S. Yuasa, and R. Jansen, Phys. Rev. B 89, 075301 (2014).
19.R. Jansen, S. P. Dash, S. Sharma, and B. C. Min, Semicond. Sci. Technol. 27, 083001 (2012).
20.Y. Ando, K. Kasahara, K. Yamane, Y. Baba, Y. Maeda, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, Appl. Phys. Lett. 99, 012113 (2011).
21.T. Uemura, K. Kondo, J. Fujisawa, K. Matsuda, and M Yamamoto, Appl. Phys. Lett. 101, 132411 (2012).

Data & Media loading...


Article metrics loading...



Half-metal based spin injector devices for spin injection and detection application have proven to be efficient owing to their enhanced injection and detection efficiency. In this study, we extend the all-electrical spin injection and detection studies into different systems like Si and GaAs using half-metal FeO as a spin injector in the presence and absence of tunnel barrier MgO. Injection into GaAs is verified using conventional Fe/MgO/GaAs devices. Room temperature spin injection into both p-type and n-type Si is achieved and the spin injection could be observed down to 100K. Obtained spin relaxation time for these n-type and p-type Si at different temperatures agree well with the existing reports. Further, the temperature dependent spin injection and detection is also successfully achieved in FeO/GaAs (n-type) Schottkydevices, and a comparison study of the results with control experiment using Fe/MgO/GaAs (n-type) devices confirm the relaxation to be similar in the GaAs substrate, as expected. Hence, even FeOmaterial can be effectively used as an efficient spin injector as well as detector, making it an attractive candidate for the room temperaturespintronics device applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd