Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4944513
1.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnr, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
3.
3.N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
4.
4.C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
5.
5.J. M. Rondinelli, M. Stengel, and N. A. Spaldin, Nat. Nano. 3, 46 (2008).
http://dx.doi.org/10.1038/nnano.2007.412
6.
6.H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
7.
7.D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
http://dx.doi.org/10.1126/science.1086608
8.
8.D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
http://dx.doi.org/10.1038/nature07318
9.
9.M. Weisheit, S. Fhler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
http://dx.doi.org/10.1126/science.1136629
10.
10.D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Nat. Mater. 10, 853 (2011).
http://dx.doi.org/10.1038/nmat3130
11.
11.C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).
http://dx.doi.org/10.1038/nature01878
12.
12.H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Phys. Rev. Lett. 108, 056802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.056802
13.
13.G. Kresse, M. Marsman, and J. Furthmller, VASP the GUIDE, Computational Physics, Faculty of Physics, Universitt Wien, Sensengasse 8, A-1130 Wien, Austria(2013), and the references therein.
14.
14.G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 41, 11919 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.11919
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4944513 for more information on calculation setups, stuctural stability, electronic structure of the neutal compsite, pseudo gap, and MAE atδN = − 2|e|.[Supplementary Material]
16.
16.X. Liu, C. Z. Wang, M. Hupalo, Y. X. Yao, M. C. Tringides, W. C. Lu, and K. M. Ho, Phys. Rev. B 82, 245408 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245408
17.
17.M. Alemani, A. Barfuss, B. Geng, C. Girit, P. Reisenauer, M. F. Crommie, F. Wang, A. Zettl, and F. Hellman, Phys. Rev. B 86, 075433 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075433
18.
18.C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B 72, 035211 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035211
19.
19.H. Raebiger, S. Lany, and A. Zunger, Nature 453, 763 (2008).
http://dx.doi.org/10.1038/nature07009
20.
20.K. Yosida, Theory of Magnetism (Springer, New York, 1996), p. 34.
21.
21.P. Bruno, Phys. Rev. B 39, 865 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.865
22.
22.D.-s. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.14932
23.
23.G. van der Laan, J. Phys.: Condens. Matter 10, 3239 (1998).
http://dx.doi.org/10.1088/0953-8984/10/14/012
24.
24.R. Wu and A. J. Freeman, J. Magn. Magn. Mater. 200, 498 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00351-0
25.
25.D.-s. Wang, R. Wu, and A. J. Freeman, Phys. Rev. Lett. 70, 869 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.869
26.
26.I. Yang, S. Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 87, 216405 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.216405
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4944513
Loading
/content/aip/journal/adva/6/5/10.1063/1.4944513
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4944513
2016-03-14
2016-09-27

Abstract

Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ∼16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electricmaterials based on rare-earth-decorated graphene for voltage-controlled spintronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4944513.html;jsessionid=ZTC8bTjIjbuctsF-f7WaJ_-D.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4944513&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4944513&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4944513'
Right1,Right2,Right3,